Ch14-15 Genetics Review

Mendel's Experiment

- Mating true-breeding varieties (purple and white flowered plants) through self-pollination to get the P generation
- P generation is cross-pollinated to get the F1 generation (100% dominant trait)
- F1 generation is self-pollinated to get the F2 generation (75% dominant and 25% recessive trait)
- 1) Law of segregation
- 2) Law of independent assortment only for traits on non-homologous chromosomes

Important Vocab

- 1) Allele and Locus
- 2) Dominant and Recessive allele
- 3) Homozygous and Heterozygous
- 4) Phenotype and Genotype
- 5) Monohybrid and Dihybrid

Probability Rules

- 1) Multiplication rule probability of two or more independent events occurring together Ex) BBRr X bbRr What is the probability of getting Bbrr?
 - Answer: $1 \times \frac{1}{4} = \frac{1}{4}$
- 2) Addition rule probability of any two or more mutually exclusive events will occur Ex) BbRr X bbRr What is the probability of getting a recessive trait for "b" and a dominant trait for "r"?

• Answer: bbRR $\frac{1}{2}$ x $\frac{1}{4} = \frac{1}{8}$ and bbRr = $\frac{1}{2}$ x $\frac{1}{2} = \frac{1}{4}$, so added together is $\frac{3}{8}$

Inheritance Patterns

Affects of one gene

- 1) Three types of dominance complete, incomplete (blending), and co-dominance (one of each)
- 2) Multiple alleles many alleles of a singe gene to express one trait
 - Ex) Blood type phenotypes: A, B, AB, and O
 - Ex) Blood type genotypes: AA, AO, BB, BO, AB, OO (these can also be represented as the following: I^AI^A, I^Ai, I^BI^B, I^Bi, I^AI^B, i i)
- Pleiotrophy one gene effects many traits and the organism in many ways Ex) Sickle cell anemia (caused from a point mutation) and cystic fibrosis

Affects of more than one gene

1) Epistasis – one gene controls the expression of another gene; pigment gene is controlled by the gene to places the pigment

Ex) coat color in mice or dog breeds (labs)

- 2) Polygenic inheritance additive effect of 2 or more genes: continuum
 - Ex) height and skin color
 - The number of alleles involved is always one less than the phenotypic groups created from the cross

Ex: 2 genes with 2 alleles each (4 total alleles) will result in 5 phenotypic groups OR 3 phenotypic groups are created from 2 alleles from 1 gene

Pedigree Analysis - show the patterns of inheritance – branching diagram to show a trait has passed down over generations

Chromosome Theory of Inheritance

- Mid 1800s, Mendel conducted his experiments
- Late 1800s, scientists worked on the process of mitosis and meiosis
- 1900, scientists begin to see parallels between behavior of chromosomes and Mendel's "factors"
- Theory: Genes have specific loci on chromosomes and chromosomes go through segregation and independent assortment

Morgan's Drosophila Experiments

Wild-type = phenotype most common in the population

- Ex) Red eyes = wild-type w+ and white eyes = mutant type w
- Fruit flies have 4 chromosomes including one pair of sex chromosomes (XX = Female and XY = male)
- Discovered that the gene for eye color is on the X chromosome

<u>Sex-linkage</u> – gene that is located on the sex chromosomes (mainly the X chromosome)

- Phenotypes can differ between the males and females in a population
 Ex) Hemophilia, Muscular Dystrophy, Colorblindness, Male Pattern Baldness
- X inactivation in females one X chromosome becomes inactive
 - Barr body = inactive X chromosome condenses into a compact object along the inside of the nuclear membrane
 - Occurs in developing embryo
 - Which X chromosome will become inactive differs from cell to cell female has a mixture of active and inactive maternal and paternal X chromosomes
 - If female is a carrier for a recessive disorder, then some cells may display the trait and some won't

<u>Linked Genes</u> – genes on the same chromosome

- Differ from Mendel's law of independent assortment
- The closer the genes are to each other, the more likely they will be inherited together (less crossing over)

Crossed wild-type with mutant

- F1 = all heterozygous for wild-type

Crossed F1 female with mutant male

- F2 = most look like parental generation, but some had a new combination
- Recombinants = phenotype unlike parent

Linkage Mapping

- Greater the distance between two genes, the more points there are between them where crossing over can occur during Meiosis I (like the Sordaria fungus lab)
- Studied done by Morgan's helper Sturtevant

Problem is that some genes are so far apart that crossing over is almost a certainty

- If recombination frequency is 50%, then it is just like having unlinked independent assortment (random alignment of chromosomes)
- So, genes are physically linked, but genetically inherited as unlinked genes

- Map unit = not an actual physical distance, but it gives the order of the genes on a chromosome based on the recombinant frequency (only Sordaria had to be divided by 2 because only half the spores were the result of crossing over)
 - Other species, the recombinant frequency IS the map unit in centi-Morgans

Normal Exceptions to Mendel's Laws

- 2 to 3 dozen traits (most of the known traits are critical for embryonic development) have shown to be linked to whether trait is given in the sperm or the egg \rightarrow Genomic Imprinting
- Ex) Paternal linkage = M normal and F mutant, then the offspring will be normal, but if M mutant and F- normal, then the offspring will be mutant

Organelle Genes

- Mitochondria and chloroplast (plastids) have small circular DNA (extranuclear genes) that code for proteins and RNA
- Can reproduce themselves
- Don't display Mendelian inheritance
- Studies of yellow or white patches on leaves of green plants
 - Showed that variation in plastid genes altered pigmentation
 - Plastids came from the cytoplasm in the egg, and the pollen has no control over expression
 - Depending on ratio of wild-type to mutant plastids, the plant will have a variety of spots on its leaves
- Same is true for mitochondrial genes
 - Mutations in mitochondrial DNA have been linked to Alzheimer's, heart disease, and aging

Abnormal Chromosome Number

- 1) Nondisjunction Down's Syndrome, Klinefelter, Turner (monosomic)
 - Aneuploidy abnormal number of chromosomes
 - a. Trisomic -2n + 1
 - b. Monosomic -2n-1
- 2) Polyploidy more than 2 complete chromosome sets
 - a. Triploidy 3n
 - b. Tetraploidy 4n
- Common in plants, can occur in fish or amphibians
- Likely to appear normal compared to aneuploidy

Chromosomes Mutations

- 1) Deletion
- 2) Duplication
- 3) Inversion
- 4) Translocation

Disorders

- 1) Recessive inheritance cystic fibrosis, sickle cell, consanguineous matings (incest)
- 2) Dominant inheritance achondroplasia (form of dwarfism), Huntington's disease
 - a. People with a dominant lethal disorder more than likely will not survive to reproduce, but people with a recessive lethal disorder can be a carrier and pass on the allele to offspring
- 3) Multifactorial inheritance has a genetic and environmental component
 - Ex) heart disease, diabetes, cancer, alcoholism, bipolar

Genetic Testing / Counseling

- Use probability to determine the likelihood of an offspring inheriting an abnormal trait or disorder from the parents
- Parents can then decide if they want to have children and risk passing on a genetic disorder5
- There are tests to determine carriers, of the fetus, and of newborns