Ch23: Evolution of Populations

- - A ______ gene pool is important for the survival of a species in a changing environment
 - ______ organisms have 2 alleles for a gene
 - Homozygous dominant (AA), Heterozygous (Aa), and Homozygous recessive (aa)

Phenotypic Variation

•	Environments change and act as
	on
	populations
	 As environments become stable or fluctuating, this affects evolutionary
	Different genetic
	variations can be selected in each generation
•	Phenotypic variations are not directed by the environment but occur through
	in DNA and through new
	gene combinations

Phenotypic Variation

 Some phenotypic variations significantly increase or decrease _______
 of the organism and the population

Humans can impact variation in other species

Hardy-Weinberg Theorem

- Serves as a model for the genetic structure of a ______ population (equilibrium)
- <u>5 conditions for equilibrium:</u>
 - 1.
 - 2.
 - 3.
 - 4.
 - 5.

Hardy-Weinberg Equation

• p =

• q =

For allele frequencies:

For genotypic frequencies:

Causes of Evolution / Changes in Allele Frequencies

1) Natural Selection:

- Results in alleles being passed to the next generation in proportions different from their relative frequencies in the present generation
- Fitness: contribution an individual makes to the gene pool of the next generation

Survival of the "Fit Enough"

- Selection can only operate on the available genetic variation –
- Constraints due to history genes predetermine body formation and development
 - You can only work with what you have at the time
- Adaptations are often
 - part gets bigger or faster it might bring some problems with it
- Chance, natural selection, and the environment interact

Causes of Evolution

2) Genetic drift:

nonselective changes in the gene pool population \rightarrow the chance for genetic drift Allele frequencies can change at Can lead to of genetic variation within a population Can cause harmful alleles to become fixed

of genetic variation within a given population can

_____ the

differences between populations of the same species

Examples of Genetic Drift

The Bottleneck Effect:

```
change in the environment causes drastic
in the population (natural disaster)
Surviving population is
```

genetically representative of the

Examples of Genetic Drift

Founder Effect:

group and establishment of a new population whose gene pool is

of the source population

—Ex: moving to an island

Causes of Evolution

3) Gene Flow:

- -Genetic exchange due to the
 - fertile individuals or gametes between populations
- –Tends of _____ the genetic differences between populations resulting in

•

populations

Sources of Variation

Mutations – change in DNA

—_____ of new genes and new alleles

 Can be positive, negative, or neutral based on the environmental context

Sources of Variation

- ·
 - of alleles how most of the variation occurs in a population
 - —Crossing over during _____
 - Independent assortment random alignment of chromosomes in meiosis
 - —Fertilization random sperm and egg unite

Sources of Variation

- Geographical variation: differences in genetic structure between populations
 - graded change in a character along a geographic axis
 - Ex: fur color in a species of rabbits from north to south

Preservation of Genetic Variation

- Balanced polymorphism = presence of phenotypically distinct forms of a trait in a single population
 - —One morph is better adapted for one area, while the other does better in a different area
 - –Ex) shells of mollusks different banding patterns

Preservation of Genetic Variation

Outbreeding – mating of organisms that are

- Frequency-Dependent Selection –
 maintains variety by increasing the
 frequency of the _____ common
 allele
 - -Due to _____
 relationships

Preservation of Genetic Variation

- Diploidy _____ condition that shelters a _____ gene pool of alleles
 - - -Sickle cell anemia and malaria protection
- Evolutionary Neutral Traits _____ selective value
 - Ex) fingerprints, blood type