Chapter 2 – The Chemical Context of Life

Chemical Foundations of Biology

Life depends on chemical reactions

Spray contains irritating chemicals generated in two sets of glands.

Bombardier beetle – uses chemicals for defense

Biological Hierarchy

Organism level Zebra (Includes several organ systems)

Organ system level Circulatory system

> Organ level Heart

Tissue level Cardiac muscle tissue

Cellular level Cardiac muscle cell

Organelle level Cell nucleus

Molecular level

Atomic level Oxygen atom

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

 REMEMBER: life follows a hierarchy of increasing complexity

 Chemical components make up all matter – living or nonliving.

Essential Elements of Life

C – Carbon
H – Hydrogen
O - Oxygen
N – Nitrogen

MAKE UP 96% of living matter!

Account for remaining 4%

Table 2.	Naturally Occurring Elements in the Human Body			
Symbol	Element	Atomic Number (See p. 29)	Percentage of Human Body Weight	
0	Oxygen	8	65.0	
С	Carbon	6	18.5	
Н	Hydrogen	1	9.5	
N	Nitrogen	7	3.3	
Ca	Calcium	20	1.5	
Р	Phosphorus	15	1.0	
K	Potassium	19	0.4	
S	Sulfur	16	0.3	
Na	Sodium	11	0.2	
Cl	Chlorine	17	0.2	
Mg	Magnesium	12	0.1	

Trace elements (less than 0.01%): boron (B), chromium (Cr), cobalt (Co), copper (Cu), fluorine (F), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), silicon (Si), tin (Sn), vanadium (V), and zinc (Zn).

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Emergent Properties

 Compound: a substance existing of two or more different elements combined in a fixed ratio.

Essential Elements of Life

- C Carbon
- H Hydrogen
- O Oxygen
- N Nitrogen

MAKE UP 96% of living matter!

Account for remaining 4%

Table 2.1	s in the		
Symbol	Element	Atomic Number (See p. 29)	Percentage of Human Body Weight
0	Oxygen	8	65.0
С	Carbon	6	18.5
Н	Hydrogen	1	9.5
Ν	Nitrogen	7	3.3
Ca	Calcium	20	1.5
Р	Phosphorus	15	1.0
K	Potassium	19	0.4
S	Sulfur	16	0.3
Na	Sodium	11	0.2
Cl	Chlorine	17	0.2
Mg	Magnesium	12	0.1

Trace elements (less than 0.01%): boron (B), chromium (Cr), cobalt (Co), copper (Cu), fluorine (F), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), silicon (Si), tin (Sn), vanadium (V), and zinc (Zn).

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Element Deficiencies

Plate 1. Nitrogen deficiency in bamboo palm (Chamaedorea seifrizii) seedlings.

ATOMS

- Smallest unit having properties of an element
- Composed of 3 <u>subatomic particles</u>:
 - Electrons (-) charge (located in orbitals around nucleus)
 - Protons (+) charge
 - Neutrons no charge (neutral)

Nucleus of atom

 Charge is measured in daltons (1.7X10-24)

Atom Structure

ATOMIC NUMBER

- Indicates the number of protons in a particular atom
- Indirectly indicates the number of electrons
- Represented as a <u>subscript</u> to the left of the symbol
 - Ex: ₂He (2 protons, 2 electrons)

MASS NUMBER

- (Mass number atomic number) = number of NEUTRONS.
- Represented as a superscript on an element
 - Ex: ⁴He
 - -(4-2) = 2 neutrons

ATOMIC MASS

- Most of an atom's mass is located in the nucleus
- What subatomic particles make up the majority of the mass of an atom?
 - Protons + neutrons = mass number
 - Therefore, the mass number is an <u>approximation</u> of the mass of an atom

ISOTOPES

- Elements with varying numbers of neutrons.
- Which number will vary -- The atomic number or mass number?
 - Ex: ¹⁴C (what is this isotope used for?)
 - Ex: ¹³C
 - Ex: ¹²C (most common isotope of carbon – 99% of carbon in nature)

Isotopes as Radioactive tracers

- Uses:
 - Measure decay to date rocks & fossils
 - Diagnostic measures such as kidney disorders and treatment of thyroid cancer
 - PET scans cancerous growth

Isotopes and Radioactive Tracers

Energy of Atoms

- Energy = the capacity to cause change; as in the ability to do work
- Potential energy = stored energy due to location or structure.

Olentangy River – potential energy – dam closed

Hoover dam – open locks = released energy

Electron Behavior

 Based on the electrons in the outermost energy shell

Ex: Hydrogen

- Is H highly reactive with other elements? Why or why not?
- Lets take a closer look

ELECTRON BEHAVIOR

Reactivity of atoms is determined by UNPAIRED ELECTRONS

• What type of bond is this?

Bonds between atoms

Nature of chemical bonds

 Union between atoms when e-'s are gained, lost, or shared

Electron Excitation

- When atoms absorb energy, electrons may move into an orbital at a higher energy level
 - Ex: When a photon of light strikes a photosynthetic pigment, an electron in an atom contained within the molecule becomes excited.

3 types of chemical bonds

- Covalent Bonds
- Ionic Bonds
- Hydrogen Bonds

Covalent Bonds

 Holds together two atoms that share one OR MORE pairs of electrons

 Two or more atoms held together by <u>covalent bonds</u> = <u>MOLECULE</u>

Types of Covalent Bonds

- <u>Nonpolar covalent</u>: atoms share electrons equally.
- <u>Polar covalent</u>: atoms share e-'s unequally [®] there is a difference in charge between the poles of the bond

Electro-negativity = the attraction of a particular kind of atom for the electrons of a covalent bond

Oxygen is more ELECTRONEGATIVE and has a greater "pull" from its electrons than Hydrogen.

IONS

- Charged atoms or molecules
- <u>Cation</u>: ion with a positive charge
 - Ex: Na⁺ (Na⁺ has 11 protons and 10 electrons; has a net (+) charge.
- Anion: ion with a negative charge

 Ex. Cl⁻

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Ionic Bonds

- When an atom loses or gains one or more e-'s, it becomes more (+) or more (-) = ION.
- cations & anions ions are linked by mutual attraction of opposite charges, as in NaCI.
 - Compounds formed by ionic bonds = <u>ionic</u> <u>compounds/salts</u>

IS NaCI a MOLECULE? Why or Why not?

Hydrogen Bonds

- Weak bond
- Forms when a (H) atom covalently bonded to one electronegative atom it can then be attracted to ANOTHER electronegative atom
- H's electronegative partners are usually Oxygen (O) and Nitrogen (N)
 - Analogy: A person sees someone they are attracted to, but a more attractive individual walks by, and the initial attraction is no longer needed.

Hydrogen Bonds

Van der Waals Interactions

- Occurs when there is a momentary uneven e- distribution
 - This creates changing positive and negative regions
 - Weak attractions are formed

Van der Waals Interactions

Molecular Shape & Function

- Molecules have characteristic shapes and sizes (remember <u>form correlates to</u> <u>function</u> in living organisms)
- Molecular shape determines how biological molecules recognize and respond to one another.

Endorphins bind to the surface of brain cells to relieve pain. Similarly shaped drugs have same affect. Ex: morphine, heroin, opiates,etc.

Chemical Reactions

 Making and/or breaking of chemical bonds.

Why a single arrow pointing in one direction?

Chemical Equilibrium

 When forward and reverse reactions happen at the same time or rate

Chemical Reactions

