Chemistry of Life Notes

Section 1: Matter and Substances

- 1. What is the difference between an atom, element, and a molecule? What occurs when different numbers of oxygen atoms combine to form molecules?
 - Atom =
 - Element =
 - Molecule =
 - O₂ =
 - O₃ =
- 2. Draw and label the structure of an atom (include proton, neutron, electron, energy level, and nucleus plus the charge on each subunit).

- 3. What are the 5 main elements found in living things?
- 4. What elements are found in the chemical formula: H₂O?
- 5. What is polarity?
- 6. What is the difference between the three types of bonds: covalent, ionic, and hydrogen?
 Covalent =
 - Ionic =
 - a. What is an ion?
 - Hydrogen =

Section 2: Water and Solutions

1. Four properties of water.

- A. Water molecules stick to each other and other things
 - a. Cohesion
 - b. Adhesion
 - c. Surface tension

B. Water molecules are polar (negative and positive sides) and act as a solvent

C. Water absorbs and releases heat without a large change in temperature

D. Ice floats on water

- 2. What is a solution?
- 3. What are the differences between acids and bases?

Section 3: Macromolecules

- 1. What is the main element of living things?
- 2. What are the 4 main types of macromolecules?
- 3. Polymers =
 - a. Each unit of polymer = _____

b. Synthesis of polymers

- i. Dehydration synthesis: _____
 - 1. Monomers joined by removal of water
 - a. One contributes –OH
 - b. One contributes --H
 - c. Together \rightarrow H₂O

ii. Process requires ______ and enzymes (proteins)

c. Breakdown of polymers

i. ____

		Reaction:		
1.	Hydro = water and Lysis = to _			
2.		of dehydration synthesis reaction		
3.	Uses water to split polymer			
л	11 O colita into 11 8 OU			

- 4. H_2O splits into -H & -OH
- 5. -H & -OH bond to where ______ was before

Macromolecule	Polymer (Many	Monomer (Basic	Functions	Examples
	monomers)	Building Block)		
Carbohydrate				Glucose
			1.	<u>Storage:</u>
Elements:				Plants
			2.	and
				Animals
Lipid				1. Triglyceride
			1.	2.
Elements:	No True			
	Polymers		2.	3. Wax
				4. Hormones, Steroids,
			3.	and
Protein			1.	1.
Elements:			2.	2.
			3. Movement	3. muscle proteins
			4. Transport oxygen	4. hemoglobin in red
				blood cells
			5. Immune system	5. antibiotics
Nucleic Acid				
	1.		1.	
Elements:				Same as polymers
	2.			
	2			
	3.			

Carbohydrate

- 1. Carb Structure and Energy Sources
 - Structural Carbohydrates

 - Chitin similar glucose arrangement to cellulose but found in _____ cell walls
 - Energy Carbohydrates
 - Glycogen _____ glucose in the liver in the alpha configuration
 - Starch glucose molecules are all the same orientation so it forms a ______and can be ______(alpha configuration)

Lipids

- 1. Saturated Fats (trigylcerides)

 - _____at room temperature

2. Unsaturated Fats

- _____ all the hydrogens that can be bound to the carbons in the chain which forms ______ between electrons
- _____at room temperature

3. Phospholipids

- Make up the ______ which is the boundary of the cell
- Has two regions:
 - ______tails that repel water

head that attracts water

Protein

- 1. Amino acid structure:
 - Central ______ atom
 - Contains an _____ with a NH₂, a _____ with a COOH, and a _____
 - The last side group is the ______. Each amino acid has a different R group that gives the amino acid a unique characteristic

2. How to build proteins

- _____ of 2 or more amino acids
- (-COOH) and (NH₂) group are joined by a covalent called a
- The bonds create a repeated ______ which is backbone of polypeptide chain

3. Protein Structure & Function

- Function depends on structure it all starts with amino acid sequence
 - Folded, twisted, coiled into ______
 - There are _____ levels of protein structure

Primary

- ______based on the ______of
 amino acids and peptide bonds
- Each type of protein has a unique primary structure of amino acids
- Amino acid sequence is determined by the ______
 - Small change in DNA will affect the protein and can cause serious problems

Secondary

- _____ and coiling of the amino acid chain
 - Can be an alpha (α) helix or beta (β) pleated sheet
 - Folds are result of ______ between R-groups of different amino acids

Tertiary

- Determined by interactions and bonding between ______
 - _____ & Hydrophilic interactions due to water
 - around the protein
 - More Hydrogen bonds
 - between R-groups with sulfur
 with a transfer of electrons

Quaternary

Two or more ______ joined together causing the overall protein structure

Nucleic Acids

1. Nucleotide Structure

2. ATP Structure

- _____nitrogen base
- _____ sugar
- _____ phosphate groups