Chapter 17

From Gene to Protein

Benjamin Cimmings

Gene Expression

 Process by which DNA directs the synthesis of proteins

- Scientists have developed the one gene one polypeptide hypothesis
 - Each gene codes for a polypeptide

From Gene to Protein

- Transcription the synthesis of RNA from the DNA template
 - messenger RNA (mRNA) carries a genetic message from the DNA in the nucleus to the ribosome in the cytoplasm
- *Translation* the actual synthesis of a protein at the ribosome which occurs under the direction of mRNA
 - *Ribosomal RNA (rRNA)* the RNA that makes up the ribosome
 - Transfer RNA (tRNA) RNA that is the interpreter of the mRNA strand
- Codon mRNA base triplets that code for specific amino acids

Types of RNA in Eukaryotic Cells

Type of RNA	Functions
Messenger RNA (mRNA)	Carries information specifying amino acid sequences of proteins from DNA to ribosomes.
Transfer RNA (tRNA)	Plays catalytic (ribozyme) roles and structural roles in ribosomes.
Ribosomal RNA (rRNA)	Plays structural and catalytic (ribozyme) roles in ribosomes.

Primary transcript

Small nuclear RNA (snRNA)

SRP RNA

Serves as a precursor to mRNA, rRNA, or tRNA and may be processed by splicing or cleavage . In eukaryotes, pre-mRNA commonly contains introns, noncoding segments that are spliced out as the primary transcript is processed. Some intron RNA acts as a ribozyme, catalyzing its own splicing.

Plays structural and catalytic roles in spliceosomes, the complexes of protein and RNA that splice pre-mRNA in the eukaryotic nucleus.

Is a component of the signalrecognition particle (SRP), the protein-RNA complex that recognizes the signal peptides of polypeptides targeted to the ER.

Types of RNA in Eukaryotic Cells

- RNAi = microRNA and small interfering RNA that inhibits gene expression by degrading mRNA
- <u>Video</u>

From Gene to Protein

The Dictionary of the Genetic Code

From Gene to Protein

Overview of Protein Synthesis

- In transcription, mRNA carries the information from DNA to the cell's protein-synthesizing machinery
 - Transcribed from template strand of a gene
- RNA polymerase
 - Enzyme binds to "Promoter Region" marked by TATA box and start sequence (about 25 base pairs of TATATATAT)
 - Pries DNA strand apart
 - Hooks together RNA nucleotides
 - Add to 3' end only
- Promoter DNA sequence that initiates transcription
- Terminator signals end of transcription

 Initiation – transcription factors (a collection of proteins) mediate binding of RNA polymerase and the initiation of transcription

 Elongation – as nucleotides are added to the 3' end, the RNA molecule pulls away from DNA strand and double helix re-forms

- Termination termination sequence (AAUAAA) is reached and the RNA transcript is released
 - RNA polymerase detaches from the DNA

Average Transcription

- Average transcription unit = 8000 nucleotides
- Average protein = 400 amino acids

- Most eukaryotic genes contain non-coding sequences (introns) and coding sequences (exons).
- Enzymes remove the introns and join the exons when forming mRNA in a process called "Gene Splicing"

Modifying pre mRNA in Eukaryotes

RNA Processing:

• Attach 5' GTP cap and a poly-A tail

Helps with exporting RNA from nucleus, protects RNA from degradation, helps attach to ribosome

RNA Splicing:

- Introns and exons introns are removed from pre mRNA
 - snRNPs make up a spliceosome that cuts the introns and removes them

Modifying pre mRNA in Eukaryotes

RNA Splicing:

- snRNPs = small nuclear ribonucleoproteins
 - Part of a group of RNA molecules called ribozymes (RNA molecules that act as enzymes)

Alternative RNA Splicing:

- Removal of an exon with an intron to produce different combinations of exons
 - This results in more than one polypeptide per gene

Synthesis of Proteins

- Translation a cell interprets a genetic message and builds a protein accordingly
- tRNA (transfer RNA) – transfers amino acids from the cytoplasm's amino acid pool to a ribosome

- tRNA consists of a single RNA strand that is about 80 nucleotides long
- 3D structure
- 45 tRNAs some anticodons can recognize 2 or more different codons
- Aminoacyl-tRNA Synthetase enzyme the correctly joins tRNA and amino acids
 Driven by ATP hydrolysis

Structure of tRNA

<u>Ribosomes</u>

- Large and small subunits made up of proteins and RNA molecules (rRNA)
- 3 binding sites for tRNA
 - P site (peptidyl tRNA) holds tRNA carrying the growing polypeptide chain
 - A site (aminoacyl tRNA) holds the tRNA carrying the next amino acid to be added to the chain
 - -E site Exit site

Anatomy of a Functioning Ribosome

- 1. Initiation
 - Small ribosomal subunits binds to mRNA and tRNA (special initiator) at the 5' end
 - AUG = methionine this the start codon
 - GTP (guanosine triphosphate) provides the

- 2. Elongation
 - Codon recognition (uses 2 GTP) mRNA codon in A site forms hydrogen bond with anticodon of incoming tRNA
 - Peptide bond formation rRNA of large subunit catalyses formation of a peptide bond that joins P-A sites amino acids
 - Translocation (uses 1 GTP) ribosome moves the tRNA in the A site with its polypeptide to the P site

- 3. Termination
 - Stop codons (UAA, UGA, and UAG)
 - Protein called *release factor* binds to the stop codon in the A site
 - Causes addition of water to the polypeptide chain
 - Hydrolyses the completed polypeptide from the tRNA in the P site

From Polypeptide to Functional Protein

- Genes determine a protein's primary structure and primary structure determines conformation
- Amino acids may be chemically modified by the addition of sugars, lipids, or phosphate groups

Protein Synthesis

 <u>http://www.wisc-</u> online.com/objects/index_tj.asp?objid=AP 1302

- <u>https://www.youtube.com/watch?v=yqESR</u>
 <u>7E4b_8</u>
- DNA replication and protein synthesis
- <u>https://www.youtube.com/watch?v=5oyQX</u>
 <u>R9gJrs</u>

Animations

- Transcription
- <u>http://www.ncc.gmu.edu/dna/mRNAanim.h</u>
 <u>tm</u>

- Translation
- <u>http://www.ncc.gmu.edu/dna/ANIMPROT.</u>
 <u>htm</u>

- Change in one base pair of a gene
- *Mutations* changes in the genetic material of a cell
- Base-pair substitution replacement of one nucleotide and its partner in the complementary DNA strand with another
 - Could be *silent* no effect
 - Could have little effect missense mutation
 - Could have a significant effect nonsense mutation

 Sickle-Cell Disease – single base pair mutation produces a defective protein that forms hemoglobin

- 2. Insertion and Deletion addition or loss of nucleotide pairs in a gene.
 - May alter the reading frame frameshift mutation

ŭ

Met

Stop

Base-pair insertion or deletion

Frameshift causing immediate nonsense Extra U

Insertion or deletion of 3 nucleotides: no frameshift; extra or missing amino acid

Wild type Ŭ Ŭ Ŭ G GČŬ ŭ mRNA Protein Glv Met Lys Phe Stop **Base-pair substitution** No effect on amino acid sequence U instead of C ŬŬŬ G Phe Gly Met Lys Stop Missense A instead of G MM Ŭ Met Lys Phe Ser Stop Nonsense U instead of A

<u>Mutagens</u>

- Environmental factors that can cause spontaneous errors during DNA replication, repair, or recombination
- Examples include X-rays, UV light, and carcinogens

What are Genes?

 A region of DNA whose final product is either a polypeptide or an RNA molecule

