Ch40 Thermoregulation

Animal Form and Function

- Organisms use free energy to maintain organization, grow, and reproduce
- Physical laws shape evolution and animal's body shape and size
 - The larger the animal, the more metabolism is required to keep it alive

- However, the metabolic rate per body mass has an inverse relationship
 - The smaller the organism, the higher the metabolic rate
 - One idea is that heat is lost at a greater rate in smaller organisms due to a higher surface area to volume ratio
 - Also as body size becomes smaller, each gram of tissue increases in energy cost

Levels of Organization

Atom \rightarrow Molecule \rightarrow Organelle \rightarrow Cell \rightarrow Tissue \rightarrow Organ \rightarrow Organ system \rightarrow Organism

Homeostasis: Feedback control loops

• Homeostasis = stable internal environment

 Control systems operate around a set point – sensors can detect a stimulus above or below the set point

- Negative feedback = response is to reduce the stimulus
 - Ex: body temperature regulation

- Positive feedback = response is to increase the stimulus
 - Ex: blood clotting and child birth

Homeostasis: Thermoregulation

• Thermoregulation = how animals maintain an internal temperature within a tolerable range

- Source of Heat
 - Endotherms = maintenance of body temperature is mostly by heat generated by metabolism
 - Ex: mammals

- Source of Heat
 - Ectotherms = maintenance of body temperature is by heat from external sources because of relatively little heat generated by metabolism
 - Ex: invertebrates, fish, amphibians, and reptiles

Homeostasis: Thermoregulation

- Stability of Body Temperature
 - Piokilotherms = maintaining a body temperature that is the same as the surrounding environment
 - Varies body temperature
 - Ex: most aquatic animals (excluding sea mammals)
 - Homeotherm = relatively constant body temperature

Heat Gain and Loss

 Integumentary system = thermoregulation through the skin

 Insulation – reduces the flow of heat between an animal and its environment

Heat Gain and Loss

- Circulatory system = adaptations to aid in heat retention and loss
 - Vasoconstriction and vasodilation
 - Countercurrent exchange = antiparallel arrangement of blood vessels that aids in heat transfer; flow of adjacent fluids in opposite directions
 - Ex: birds, some mammals, and fish
 - Fish also helps with oxygen intake

Heat Gain and Loss

- Behavior birds seeking warm places in winter, bees huddling in a hive to retain heat, invertebrates orienting themselves to receive maximum sunlight to become active, preflight warm-up in moths
- Nervous system = thermoregulation center in the brain is the hypothalamus