Metabolism

Metabolism

- A cell's metabolism is all the organism's chemical reactions.
- Metabolism manages the material and energy resources of the cell.
- Energy is the capacity to do work.

Metabolism

- 2 types of Energy Pathways:
 Catabolic Pathways
 - Anabolic Pathways

Metabolic Pathways - Catabolic

- <u>Catabolic Pathways</u>: metabolic pathways which <u>RELEASE</u> energy by breaking down complex molecules to simpler molecules
 - <u>"downhill"</u> metabolic pathway energy is released from storage (glycogen to glucose)
 - <u>Ex</u>: Triglycerides are broken down into free fatty acids for energy usage

Metabolic Pathways - Anabolic

- Anabolic Pathways: metabolic pathways which CONSUME/USE energy to build complex molecules from simpler ones.
 - <u>"uphill"</u> metabolic pathway energy used to drive uphill reactions.
 - **<u>Ex</u>**: synthesis of proteins from amino acids

Laws of Energy Transformations

• We live in open systems – energy is transferred from the organisms (the matter in a particular area) and their surroundings

First Law of Thermodynamics

 Energy can neither be created or destroyed
 Energy can be transferred and transformed

Laws of Energy Transformations

• With every energy transfer or transformation some becomes unusable energy or unavailable to do work

- Second Law of Thermodynamics
 - Every energy transfer or transformation increases the entropy (randomness) of the universe
 - Organisms can increase their order, as long as the order of their surroundings decrease

Free Energy

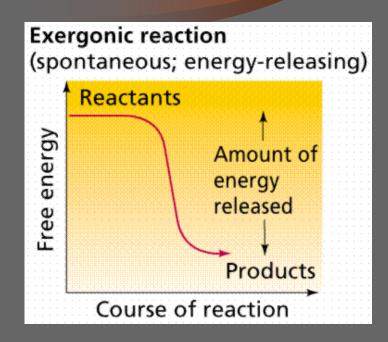
- Organisms live at the expense of free energy and require a highly ordered system
 - Order is maintained by constant free energy input into the system
 - Loss of order or free energy flow results in death
 - Increased disorder and entropy are offset by biological processes that maintain or increase order

Free Energy

- Living systems do not violate the 2nd law of thermodynamics because
 - Order is maintained by coupling cellular processes that increase entropy (negative free energy change) with those that decrease entropy (positive free energy change)
 - Energy input must exceed free energy lost to entropy to maintain order and power cellular processes

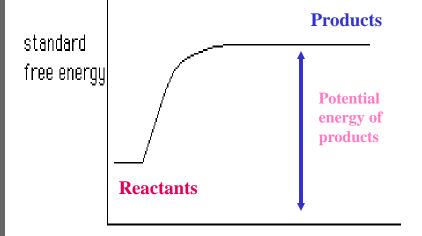
• Gibb's Equation: $\Delta G = \Delta H - T\Delta S$

- ΔG = change in free energy
- ΔH = change in system's enthalpy
- T = temperature in Kelvin units
- ΔS = change in system's entropy


• Systems will move toward greater stability (low ΔG) and eventually reach a point of equilibrium

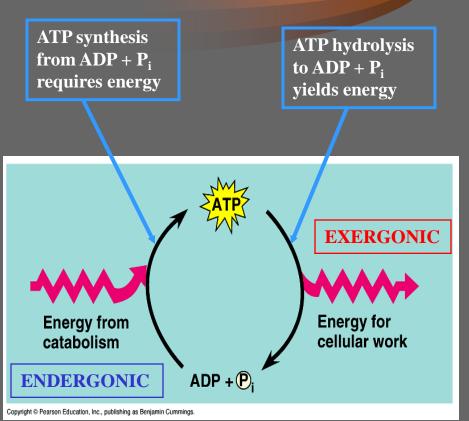
Metabolic Pathways

- Metabolic pathways are composed of MANY individual reactions.
- <u>Two types of chemical reactions</u>:
 - 1. Exergonic reactions
 - 2. Endergonic reactions

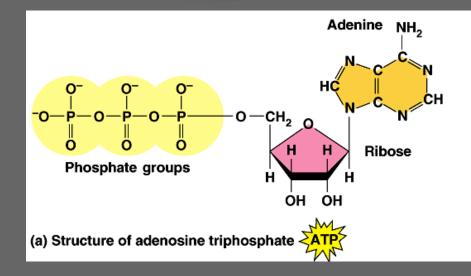

Exergonic Reactions

- **Definition**: Spontaneous chemical reaction in which there is a NET RELEASE of free energy ($\Delta G < 0$).
 - Total free energy of the products is less than the total free energy in the reactants (ENERGY IS GIVEN OFF DURING <u>REACTION)</u>
 - Occurs spontaneously and releases energy
 - REQUIRES activation energy
 - Example: food broken down and releases energy from chemical bonds

Endergonic Reactions


- **Definition** Reactions that require the INPUT of energy ($\Delta G > 0$).
 - PRODUCTS have MORE energy than REACTANTS.
 - Absorb energy and are <u>NOT</u>
 <u>SPONTANEOUS</u>
 - Requires LARGE AMOUNTS of ACTIVATION ENERGY
 - **Ex**: plants use carbon dioxide and water to form sugars

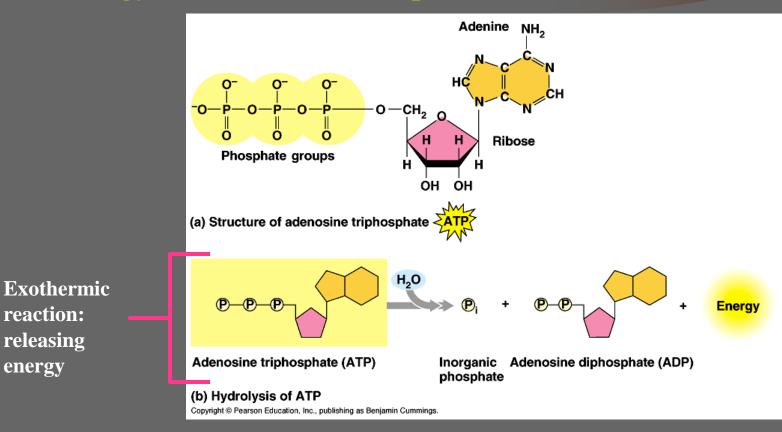
Course of Reaction


Energy Coupling

- Heat alone is an inefficient energy source
- Energy Coupling: the use of an exergonic reaction to drive an endergonic one.
 - Ex: the breakdown and formation of ATP
- ATP is responsible for MOST energy coupling in cells – ATP hydrolysis is coupled with endergonic reactions

Adenosine Triphosphate (ATP)

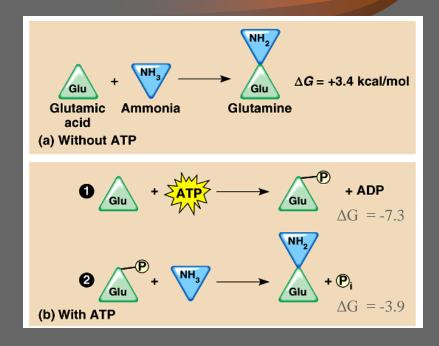
- ATP has 3 main components:
 - Nitrogen base Adenine
 - Sugar molecule Ribose
 - 3 Phosphate groups



Adenosine Triphosphate (ATP)

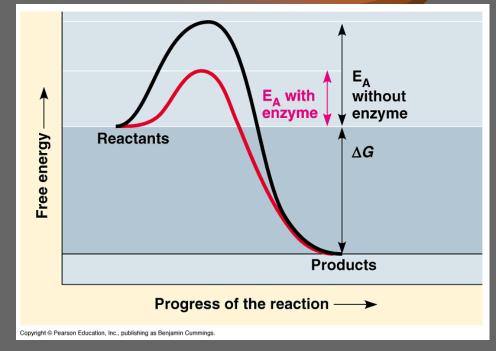
- Bonds linking the phosphate groups may be broken by hydrolysis.
- At any given time there is a very high ratio of ATP to ADP
- ATP cannot be stockpiled for extended periods of time.
- Each second, ~ 10 million molecules of ATP are created and recycled.

HYDROLYSIS of ATP

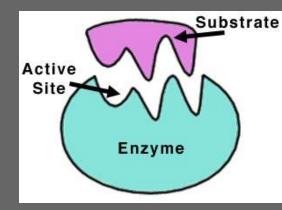

Energy released from this process is free to do work.

energy

Breakdown (HYDROLYSIS) of ATP


- Hydrolysis of ATP releases heat to surrounding environment.
- Heat alone is **INEFFICIENT** as an energy source
- Energy from ATP hydrolysis is coupled to endergonic reactions by transferring P_i from ATP to another molecule
 = PHOSPHORYLATION

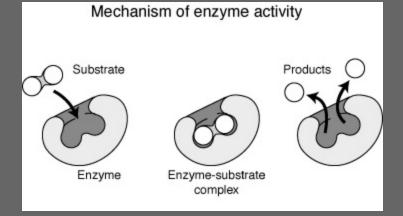
Phosphorylated molecule is more reactive, therefore able to perform work.


ENZYMES

- <u>CATALYSTS</u> speed up the rate of chemical reactions without being used up in the process
- <u>ENZYMES</u> are proteins that act as biological catalysts
- Enzymes lower the activation energy of a reaction
- <u>ACTIVATION ENERGY</u> is the amount of energy needed to start a reaction

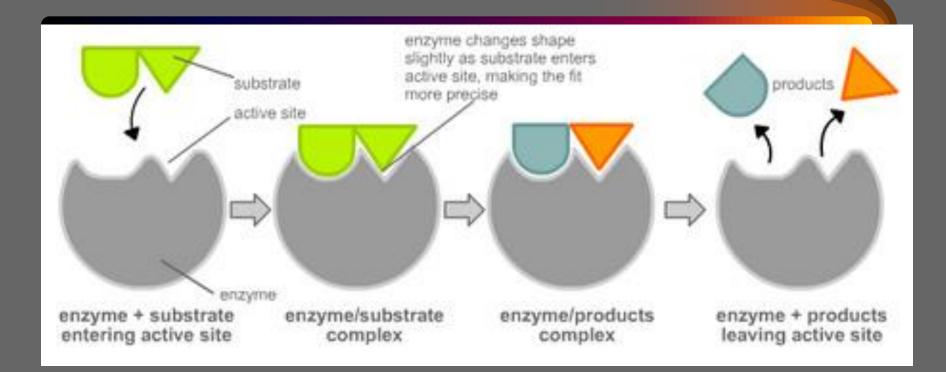
ENZYMES

- Have no effect on the overall free energy (G) of the reaction, they just force the reaction to occur faster.
- Reactants can only breakdown when they have absorbed enough energy to reach the **transition state**
- The specificity of an enzyme is due to its 3D shape and the levels of organization in the protein


• The reactant the enzyme acts on is referred to as the enzyme's **SUBSTRATE**

Only a restricted region of the enzyme molecule actually binds to the substrate

 This area is called the enzyme's <u>ACTIVE</u> <u>SITE</u>



- The active site is usually a pocket or groove on the surface of the enzyme
- When the enzyme binds to the substrate, a temporary <u>enzyme-substrate complex</u> is created.

- The enzymatic cycle happens so fast that a single enzyme molecule typically converts about 1000 substrate molecules per second over to product.
- Enzymes emerge from the reaction in their original form.
- However, the Induced Fit Model refers to a slight change in shape to produce a tight fit around the substrate

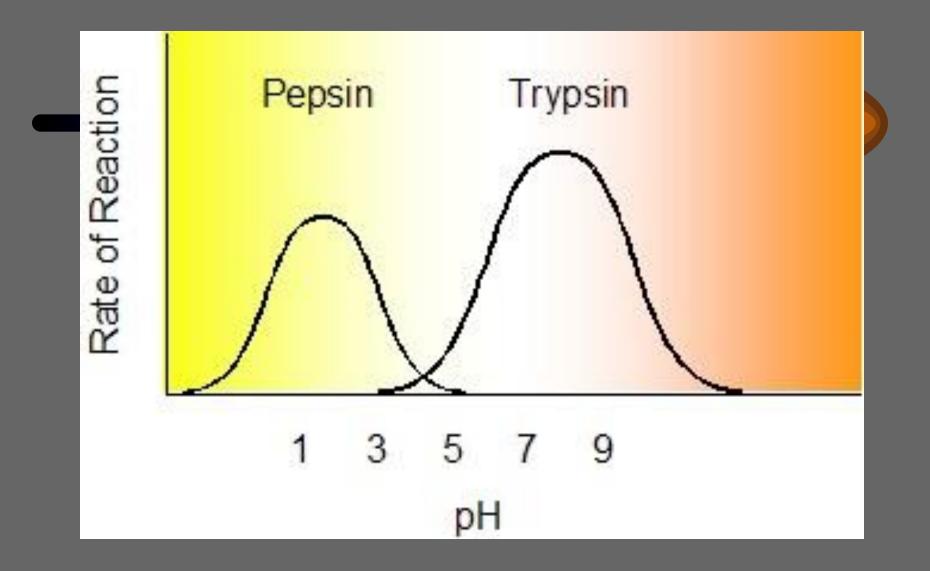
Enzymes and Activation Energy

- How can enzymes lower the activation energy?
 - Allows reactants to get into the proper orientation to react
 - Stretches the substrate to cause bonds to break easier (helps reach the transition state faster)
 - Creates a microenvironment more conducive for the reaction to occur
 - Direct participation of the active site in the reaction may bind to the substrate temporarily

Factors Affecting Enzymatic Activity

- 1. Temperature
- 2. pH
- 3. Salt concentrations (Salinity)
- 4. Cofactors
- 5. Enzyme inhibitors

Temperature & Enzymatic Activity

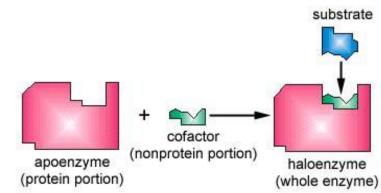

- Up to a certain point, the velocity of an enzymatic reaction **INCREASES** with increasing temperatures
- INCREASED TEMPERATURE = increase in molecular movement resulting in greater collisions between enzymes and molecules
- Temperatures that get TOO high result in thermal agitation of the enzyme molecule
 - This enzyme becomes **DENATURED**

Draw a graph to show this trend

pH & Enzymatic Activity

- The optimal range for most enzymes is **pH 6-8**
- One EXCEPTION: <u>**Pepsin**</u>: digestive enzyme in the stomach works best at pH 2
- An environment that is TOO ACIDIC or TOO ALKALINE can denature an enzyme

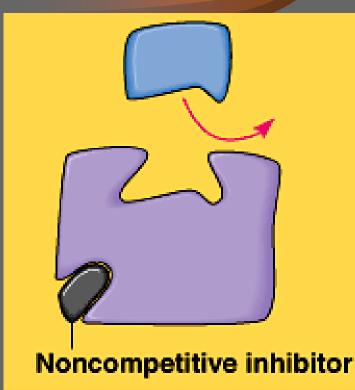
Draw a graph to show this trend



Salinity & Enzymatic Activity

- Most enzymes can't tolerate environmental conditions that are too SALINE (salty)
- This will also cause the enzyme to denature

Cofactors & Enzymatic Activity

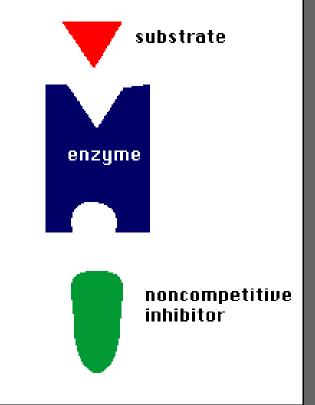

- Many enzymes require non-protein helpers for catalytic activity = <u>COFACTORS</u>
 - Inorganic cofactors include: Mg, Ca, Fe, Cu, Zn, & Mn.
- Organic cofactors are called
 <u>COENZYMES</u>
 - ATP, Vitamins, and Coenzyme A (CoA) are also coenzymes
- Cofactors can bind tightly to the active site of the enzyme permanently or they may bind loosely and release along with the substrate.

Inhibitors & Enzymatic Activity

Irreversible inhibition:

- If the inhibitor attaches to the enzyme by covalent bonds, inhibition is USUALLY IRREVERSIBLE
- <u>Example</u>: penicillin blocks the active site of an enzyme that many bacteria use to make their cell walls
- Example: sarin (nerve gas) and DDT (pesticide) can impact the nervous system by binding to acetylcholinesterase

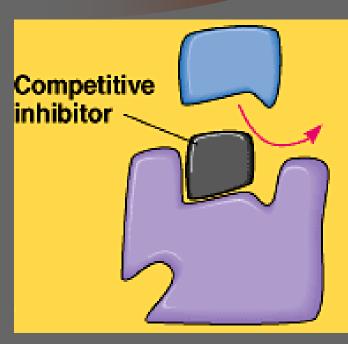
Inhibitors & Enzymatic Reactions


• <u>Reversible Inhibition</u>:

- Inhibitor attaches to the enzyme using weak interactions
- Reversible inhibition can be competitive or non-competitive

Inhibitors & Enzymatic Reactions

• Non-Competitive Inhibitors:


- Impede the enzymatic reactions by binding to a part of the enzyme away from the active site
- This causes the enzyme to change its shape rendering the active site unreceptive

Inhibitors & Enzymatic Reactions

• <u>Reversible – Competitive</u> <u>Inhibitors</u>:

- Resemble the normal substrate molecule and compete for admission into the active site
- They reduce the productivity of enzymes
- Increasing the number of substrate molecules reduces the effectiveness of competitive inhibitors

Regulation of Enzyme Activity

- <u>Allosteric regulation</u> involves the binding of a molecule to an enzyme other than at its active site
- This causes the enzyme to be stimulated or inhibited depending on the molecule
- ATP can inhibit activity while ADP can stimulate activity on the same enzyme

Regulation of Enzyme Activity

• <u>Cooperativity</u> is an amplification of enzyme activity when one substrate binds to one active site and stimulates the other subunits

Regulation of Enzyme Activity

- <u>Feedback inhibition</u> is when a metabolic pathway is switched off by the inhibitory binding of the end product to an enzyme
- This stops the pathway from continuing
- Example: synthesis of amino acids

Location of Enzymes in Cell

- Some are grouped into complexes, some incorporated into membranes and others are contained inside organelles (lysosomes)
- Bacteria (prokaryotic cells) have enzymes located in the cytosol

• Animations