Ch3: Water

Essential Knowledge

- 2.A.3 Organisms must exchange matter with the environment to grow, reproduce and maintain organization
 - a. Molecules and atoms from the environment are necessary to build new molecules
 - Essential elements moves from the environment to organisms where it is used to build:
 - Carbon: carbohydrates, proteins, lipids, or nucleic acids.
 - Nitrogen: proteins and nucleic acids
 - Phosphorous: nucleic acids and certain lipids
 - Living systems depend on properties of water that result from its polarity and hydrogen bonding, such as: cohesion, adhesion, high specific heat capacity, universal solvent supports reactions, heat of vaporization

Emergent Properties

- The arrangement and interactions of parts creates novel properties that were not present at the preceding level of organization
 - Non-science example: Box of bicycle parts compared to a working bicycle
 - Science example: Na and Cl by themselves are toxic, but combined creates table salt and the arrangement of nucleotides in DNA combine to create heredity information that controls the cell

Water – General Information

- Life on Earth started in water and evolved for 3 billion years before spreading on land
- Large bodies of water help moderate climate
 - ³/₄ earth's surface is water
 - Also present as ice and vapor
 - Only substance in all 3 states of matter

- Since most cells are surrounded by water, osmoregulation is an important part of homeostasis in organisms
 - Cells are 70-95% water

Properties of Water

- 1. Cohesion & Adhesion
 - Surface tension
- 2. Moderation of Temperature
 - Kinetic energy
 - Heat
 - Temperature
 - Specific Heat
 - Heat of vaporization
 - Evaporative Cooling

- 3. Insulation
 - Ice floats
- 4. Solvent
 - Hydrophillic
 - Hydrophobic

Polarity of Water

- Water is a polar molecule because of the slight negative charge of oxygen and slight positive charge of hydrogen.
- Water molecules can form H-bonds with other water molecules

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Three states of water

- <u>Solid</u> crystal lattice structure –very little movement, ordered
- <u>Liquid</u> molecules take shape of container rapid movement, semi-ordered
- <u>Gas</u> Random molecular structure, VERY rapid movement

Cohesion & Adhesion

• <u>Cohesion</u>: H-bonds hold water together

- <u>Surface tension</u> is related to cohesion reason insects can walk on water without sinking
 - Water behaves as an <u>invisible film</u> <u>because of H-bonds</u>

• <u>Adhesion</u>: clinging of one substance to another

 How water is moved from roots to the leaves of trees against gravity – water adheres to the cell walls of plants

Temperature Moderation

- H₂O moderates air temp by absorbing heat from warm air and releasing stored heat to cooler air
 - Related to hydrogen bonding in water
- <u>Kinetic Energy</u> = energy of motion atoms and molecules in constant motion
 - Faster the movement, the greater the kinetic energy
- <u>Heat</u> = total amount of KINETIC ENERGY
- <u>**Temperature</u>** = intensity of heat due to average kinetic energy</u>
 - Speed of molecules increases; then temp increases

Specific Heat

- Water has a high specific heat
 - <u>Specific heat</u>: the amount of heat that must be absorbed or lost for 1g of that substance to change its temperature by 1 °C
 - Specific heat of water = 1 cal/g/°C
 - Can be thought of as a measure of <u>how well a substance</u> <u>RESISTS changing</u> its temperature when it absorbs or releases heat.
- Heat must be absorbed in order to break the hydrogen bonds, and heat is released when bonds break
 - Heat is used to break the hydrogen bonds before water molecules can start moving to increase the temperature

Specific Heat

- Why do coastal regions generally have milder climates? What does this have to due with specific heat?
 - Water moderates temperature on earth so coastal regions don't have huge influx of temp changes
- How does water's high specific heat relate to life on Earth?
 - creates a favorable, stable environment for marine life
 - our bodies are made of water, so we are more resistant to changes in our own temp

Evaporative Cooling

- <u>Vaporization/Evaporation</u>: transformation from liquid to gas
- <u>Heat of Vaporization</u>: amount of heat a liquid must absorb for 1g of it to be converted to a gas.
- <u>Evaporative Cooling</u>: as a liquid evaporates, the surface of the liquid that remains behind cools down
- Water has a high heat of vaporization
 - Which will "disappear" faster a drop of water or a drop of rubbing alcohol? Why?
 - Why does a heated liquid evaporate faster than a room temperature liquid?

Evaporative Cooling

- Why is your skin still moist after a workout?
 - The "hottest" molecules evaporate as gas, but the liquid that remains behind cooled down; not enough speed to leave the surface
 - Organisms rely on heat of vaporization to remove heat.
 - Why do you feel hotter on a humid day?

Water Insulates

- Why is the phrase, "ice floats" important?
 - If ice sank....
 - Eventually all ponds, lakes and even oceans would freeze solid
 - During summer, only the top few inches would thaw
 - Surface ice insulates water below
 - Allowing life to survive the winter
 - Seasonal turnovers of lakes
 - Nutrient cycling

Water Insulates

• Most substances are more dense when they are solid.

- not water ice floats!
- Ice forms loose crystal structure when hydrogen bonds push away from each other

Water as a Solvent

- Water can be used to do chemical reactions in the body
 Dehydration or hydrolysis reactions
- Review:
 - Solution: liquid that is a completely homogeneous mixture of two or more substances.
 - Solvent: dissolving agent; ex: milk
 - Solute: substance that is dissolved; ex: chocolate
 - Aqueous solution: solution in which H_20 is solvent

Hydrophilic

• <u>Hydrophilic substances</u> have a **HIGH AFFINITY** for water.

• Ex: a cotton hand towel...easily adheres water because of the cellulose fibers of cotton

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Phospholipid Bilayer

Hydrophilic

Hydrophobic

Hydrophobic

- Hydrophobic substances are usually nonionic and nonpolar; REPELS WATER
 - Ex: oil and fat

Fat (triglycerol)

- Water breaks up into Hydronium (H_3O^+) ions and Hydroxide (OH-) ions
 - One water molecule loses a proton $(+) = (OH^{-})$
 - One water molecule gains a proton $(+) = (H_3O^+)$

Why is this important? H₂O \longrightarrow H⁺ + OH⁻

- [H⁺] & [OH⁻] are equal in pure water. 10⁻⁷ M each pure water pH 7
 - M = Molarity is the number of moles of solute per liter of solution
- Hydroxide and hydrogen (protons) ions are highly reactive
- Changes in concentration affect cell's proteins and other molecules
- [H⁺] & [OH⁻] determine the pH of a solution

pH General

• The product of H^+ and OH^- concentrations is constant at 10^{-14}

 $[H^+][OH^-] = 10^{-14}$

- Brackets indicate Molar concentration
- Neutral solution: $[H^+]=10^{-7}$ and $[OH^-]=10^{-7}$
- If the concentration of one ion is known, we can determine the concentration of the other ion.
 - pH: $-\log 10^{-7} = -(-7) = 7$
 - pH < 7 is ACIDIC
 - pH > 7 is BASIC
 - pH units represent a TENFOLD DIFFERENCE!!
 - pH of 3 is NOT TWICE as acidic as pH 6, but 1000X

Acids

- Ex: HCl dissociates in water to H⁺ and Cl⁻; adding more H⁺ ions to the solution
- Ex: carbonic acid
- Acids have $> H^+$ than OH^-
- Acids reduce the [OH⁻]

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Bases (Alkaline)

- Ex: NaOH dissociates to Na⁺ ions and OH⁻ ions
- Ex: Ammonia
- Bases have > [OH⁻] ions than [H⁺] ions
- Bases reduce the [H⁺]

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Buffers

- pH in most cells is near NEUTRAL (pH=7)
- Small changes in pH can affect the cell
- BUFFERS help maintain the pH
 - Work by accepting excess H⁺ from solution or donating H⁺ when in depletion

$$H_2CO_3$$
 (aq) $\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}}}}}$ H^+ (aq) $+$ HCO_3^- (aq)

The symbol 🚄 💳 means that dissociation is slight.

A single arrow pointing to the right means complete dissociation (complete reaction)

Buffers usually contain a weak acid and weak base, much like Carbonic Acid in blood

Acid Precipitation

- Uncontaminated rain; pH~5.6
- Acid precipitation has pH < 5.6
 - Caused by sulfur oxides and nitrogen oxides in the atmosphere
 - Sources include: burning fossil fuels (coal, gas, oil) in factories and cars
 - Coal produces the most pollutant