Appendix B: AP Biology Equations and Formulas

Statistical Analysis and Probability				
<u>Mean</u> <u>Standard Deviation</u> *	$\overline{x} = $ sample mean			
$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$	n = size of the sample			
$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $S = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$	s = sample standard deviation (i.e., the sample-based estimate of the standard deviation of the			
Standard Error of the Mean* Chi-Square	population)			
$SE_{\overline{x}} = \frac{S}{\sqrt{n}}$ $\chi^2 = \sum \frac{(o-e)^2}{e}$	o = observed results			
Chi-Square Table	e = expected results			
p Degrees of Freedom value 1 2 3 4 5 6 7 8 0.05 3.84 5.99 7.82 9.49 11.07 12.59 14.07 15.51 0.01 6.64 9.21 11.34 13.28 15.09 16.81 18.48 20.09	Degrees of freedom are equal to the number of distinct possible outcomes minus one.			
Laws of Probability	Metric Prefixes			
If A and B are mutually exclusive, then:				
P(A or B) = P(A) + P(B)	<u>Factor Prefix Symbol</u>			
If A and B are independent, then:	10 ⁹ giga G			
$P(A \text{ and } B) = P(A) \times P(B)$	10 ⁶ mega M			
Hardy-Weinberg Equations	10 ³ kilo k			
$p^2 + 2pq + q^2 = 1$ $p =$ frequency of the dominant allele	10^{-2} centi c			
in a population	10^{-3} milli m			
p + q = 1 $q =$ frequency of the recessive allele	10^{-6} micro μ 10^{-9} nano n			
in a population				
	10 ⁻¹² pico p			
Mode = value that occurs most frequently in a data set Median = middle value that separates the greater and lesser halves of a data set				
Mean = sum of all data points divided by number of data points				

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

* For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.

Rate and Growth	dY = amount of change		Water Potential (Ψ)	
$\frac{\textbf{Rate}}{\frac{dY}{dt}}$	dt = change in time		$\Psi = \Psi_{p} + \Psi_{s}$	
Population Growth	B = birth rate		$\Psi_{\rm p} = {\rm pressure \ potential}$	
$\frac{\frac{dN}{dt}}{\frac{dN}{dt}} = B - D$	D = death rate		$\Psi_{\rm s}$ = solute potential	
Exponential Growth	N = population size		The water potential will be equal to the solute potential of a solution in an	
$\frac{dN}{dt} = r_{\max}N$	K = carrying capacity		open container because the pressure	
Logistic Growth	$r_{\max} = maximum per capita growth rate of population$		potential of the solution in an open container is zero.	
$\frac{dN}{dt} = r_{\max} N\left(\frac{K-N}{K}\right)$	T_2 = higher temperature		The Solute Potential of a Solution $\Psi_s = -iCRT$	
$\frac{\text{Temperature Coefficient } \mathbf{Q}_{10}^{\dagger}}{(1-)^{\frac{10}{2}}}$	$T_1 = $ lower temperature		i = ionization constant (this is 1.0 for	
$\mathbf{Q}_{10} = \left(\frac{k_2}{k_1}\right)^{\frac{10}{T_2 - T_1}}$	k_2 = reaction rate at T_2		sucrose because sucrose does not ionize in water)	
Primary Productivity Calculation	k_1 = reaction rate at T_1		C = molar concentration	
$\frac{\text{mg } O_2}{\text{L}} \times \frac{0.698 \text{ mL}}{\text{mg}} = \frac{\text{mL } O_2}{\text{L}}$	Q_{10} = the factor by which the reaction rate increases when the temperature is raised by ten degrees		R = pressure constant ($R = 0.0831$ liter bars/mole K)	
$\frac{\text{mL }O_2}{\text{L}} \times \frac{0.536 \text{ mg } \text{C fixed}}{\text{mL }O_2} = \frac{\text{mg } \text{C fixed}}{\text{L}}$ (at standard temperature and pressure)			T = temperature in Kelvin (°C + 273)	
(at standard temperature and pressure)	ten degrees			
Surface Area and Volume	r = radius	Dilution (used to create a dilute solution from a		
Volume of a Sphere	l = length		stock solution)	
$V = \frac{4}{3} \pi r^3$	U U	$C_i V_i = C_f V_f$		
Volume of a Rectangular Solid	h = height			
V = lwh	w = width $i = initial (star$		2,	
Volume of a Right Cylinder	s = length of one	f = final (desired) $V = volume of solution$		
$V = \pi r^2 h$	side of a cube			
Surface Area of a Sphere	A = surface area	Gibbs Free Energy		
$A = 4\pi r^2$ Surface Area of a Cube	V = volume	$\Delta G = \Delta H - T \Delta S$ $\Delta G = \text{change in Gibbs free energy}$		
$\frac{Surface Area of a Cube}{A = 6s^2}$	$\Delta S = ahanga is$			
Surface Area of a Rectangular Solid	$\Sigma = \text{sum of all} \qquad \Delta S = \text{change in} \\ \Delta H = \text{change i} \end{cases}$			
$A = \sum$ surface area of each side			emperature (in Kelvin)	
		$pH^* = -\log_{10}$		
* For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.				

[†] For use with labs only (optional).