Evolution Notes

What is Evolution?

- Evolution = ____
 - Most changes occur gradually, but can happen on a shorter time scale
 - Variations in populations come from

Time Line of Scientists

 1785 – _____ proposes that the Earth is shaped by geologic forces that occurred over _____ of years

1798 – _____ predicts that _____ population will grow faster than the space and food supplies needed to sustain it

Time Line of Scientists

1809 – ______ hypothesized that _____ could be passed

to offspring

- Was found to NOT be correct; behavior can't determine the traits that are passed to offspring
- 1831 Darwin sails around the world
- 1833 _____ explains that geologic processes observed today have always been occurring...Earth is very old

Time Line of Scientists

- 1858 _____ discusses the idea of evolution by natural selection
- 1859 Darwin publishes his book On the Origin of Species

 1866 – ______ does experiment with pea plants and starts to determine the role of genes in an organism's appearance

Darwin's Voyage

- He saw great ______ from one island to the next in the Galapagos islands – Organisms shared similarities with those on the
- He compared ______ to living organisms they resembled living organisms

Darwin's Ideas

over generations populations change

Newer forms appearing in the fossil record are

of older

species

- All species came from a few original types of life

– populations change by

having good traits for an environment, survive, and pass on genes

– Explains ______ evolution occurs

Darwin's Ideas

- Reproductive Isolation when species are not able to ______ because they are geographically separated (different islands)
 - This causes the appearance of

to the

environments and over time it would cause big differences

on different islands

Darwin's 4 Ideas

- Populations _____ offspring
- _____ exists among those offspring
- Having a particular trait makes individuals more or less likely to ______ in an environment
- Over time, those traits become adaptations

 ______ = inherited trait that is
 present in a population because the trait helps
 individuals survive and reproduce in an
 environment

Strengths and Weaknesses of Darwin's Theory

- Strengths
 - Many types of evidence
 - Logical and testable mechanism for how evolution occurs: natural selection
 - Variation in individuals is important
- Weaknesses

– Darwin didn't know very much about

Types of Evolution

 Macroevolution – over ______ periods of time that results in a

– Helps to create higher order organisms

- Microevolution over a _____ period of time and occurs _____ a population
 - Antibiotic resistance bacteria and insects that are resistant to pesticides

Antibiotic Resistance or Pesticide Resistance

Natural Selection

 Organisms with traits that are not beneficial in the environment will die off

DO NOT

evolve; Populations evolve

Types of Natural Selection

• Stabilizing Selection – maintaining an organisms

in an environment

 Occurs when environment has _____ changed much or if species are very well adapted

 Directional Selection – change from one to another

within an environment

Graphs

Diversifying Selection – when no single phenotype is _____ than another

Graphs

Artificial Selection

reproduction of organisms in a population that have desirable traits

Labradoddle puppies

Evidence - Fossils

- Fossil Record
 - Age of fossils determined by

and

- Radioactive dating = uses an element's half-life to determine the _____ age
- Half-life = the amount of time for ______ of an unstable element to break down into a stable one
- Ex: Carbon-14 is radioactive

Evidence

- Fossil Record
 - determining age of fossils based on rock layers they are found in
 - Fossils in rock layers near the surface are than fossils found in rock

layers deeper down

_____ record – not all animals will leave fossils and not all fossils have been found

Evidence

structures – same structures (bones) which are shared by related species because they have been inherited from a

 Ex) bat wing, dog leg, and human arm all have similar bone structure

 structures – organs that had a function in the past but serves in the current organism

 Ex) appendix and wisdom teeth in humans; pelvic bone in whales • Embryology – organisms appear

in their

embryo stage of development

- Many animals have backbones
- Same group of embryonic cells develop in the same order and in similar patterns in all vertebrates

 Similar genes – genes that control the structures that form in the adult form of an organism

Evidence - Molecular

can be used

to determine relationships between organisms

- The more similarities between organisms, the they are related
- The more differences, the

they are

Evidence - Biogeography

- - Can see

of organisms that live in similar

on

different continents

- Ex: sugar glider and the flying squirrel
- Ex: muskrat and carybara

Patterns of Macroevolution

 Convergent evolution – unrelated species become more and more ______ to each other

– Occurs because they are under the same

– Ex) sharks (fish) and dolphins (mammals)

• Convergent evolution can lead to the appearance of analogous structures

- Analogous structures = similar structures that have the same function but organisms are ______related
 - Structures appeared because organisms live in similar environments with the same selective pressures
 - Ex) Wings of a bat versus wings of a bird

Patterns of Macroevolution

- Divergent evolution related species become more and more _____
 - Under go _____ = split of species into 2 or more _____ when they _____ when they _____ enter a _____ environment with few other species in order to fill a large variety of ecological

- Leads to ______= many forms of life
- Ex) Finches or orchids

Patterns in Evolution

– species

that share close ecological interactions can _____ each others

evolution – can evolve in response to each other

- Ecological relationships include: Predator/prey and parasite/host, competitive species, mutualistic species
- Ex) flowers and bats that feed off of the nectar

Patterns of Macroevolution

- Extinction loss of a species – Endangered species
- Scientist use fossils to construct the Geologic Time Scale
 - Shows when each type of organisms first appeared on Earth and in what order they appeared

Microevolution Processes

Natural selection

= movement of individuals into, out of, or between populations

- Creates Gene flow = movement of alleles into or out of an area
- <u>creates random arrangement of traits</u>
- <u>alleles in the population</u> = changes the # of
- <u>change in alleles in a population due to</u> differences in survival and reproduction

Speciation

- Formation of a _____
 - Occurs because of geographic or reproductive isolation

- 2 Rates that speciation can occur:
 - Gradualism = _____
 - Punctuated Equilibrium = ____

Rate of Speciation

Gradualism in a hypothetical Rogus family

Rate of Speciation

changes occur quickly in rapid bursts with long periods of stability in between

Common reptile ancestor

Key Points

- Individual organisms do not evolve Populations evolve
- Organisms in a population do not CHOOSE to adapt – random mutations occur and they are either good or bad for the environment
- Change in populations can occur over a short period of time (within a species) or over long periods of time (creates new species)

History of Life on Earth

- Earth formed ______ years ago
- As the Earth grew, pools of water started to form and the atmosphere lacked

_ experiment tested

- Many other scientists have tested this and have formed: ______, macromolecules, RNA, and ______structures
- No one has been able to create a functioning cell in the lab

History of Life on Earth

cells were believed to be the first life to evolve on Earth

- Bacteria started producing oxygen through photosynthesis which added O2 to the
- Then, eukaryotic cells arose in the geologic time scale
 - Lots of fossils of _____ organisms

• Then,

organisms started to show up in the fossil record

History of Life on Earth

 Photosynthetic prokaryotes eventually increased the oxygen levels and other prokaryotes evolve to do

theory = one bacteria cell was taken up by another cell and the result was a mitochondria and chloroplast

- Explains how eukaryotic cells developed from prokaryotic cells
- Evidence: ______ in mitochondria and chloroplasts, both can reproduce independently of the cell, and both have ______

Kingdom Review

• Archaebacteria

• Eubacteria

Protista

Kingdom Review

• Fungi

Plantae

Animalia

Plant Adaptations

• Tropisms = plant's response to a stimulus

= response to

light

- Hydrotropism = response to ____
- Thigmotropism = response to _____
- Gravitropism = response to _____
- Plants close stomata (holes in leaves) when it is dry
- Plants produce chemicals to keep predators from eating them

Animal Adaptations

- Size of beak (birds) or neck (giraffes or Galapagos tortoise) determines
- Thick fur to live in cold biomes
- Mimic another _____ animal to get protection from predators
- Hibernation and migration
- Adaptive behaviors to enhance survival
 - Pill bugs roll up when you touch them
 - Porcupines puff out quills when in danger
 - Courtship behaviors