Ch14 Notes - Lymphatic System

"If you're not with us, then you're against us"

Three Parts

- ______ pick up excess tissue fluid that have escaped from cardiovascular system and transport it back into blood
- house phagocytic cells and lymphocytes that aid in body's defense and resistance to disease

Lymphatic Vessels

- Lymph = ____
- Function: carries fluid back to blood so blood can have a sufficient amount of volume
- Structure:
 - _____-way system towards heart and returns to ______ system
 - Moves lymph by action of _____ muscles and pressure changes caused from breathing
- Cell debris, bacteria, and viruses can ______ enter the lymph capillaries but not blood capillaries
- Bacteria and viruses can use vessels as a transport system to other areas of the body

Lymph Nodes

- **Function**: help protect the body by removing ______ from lymph (immune response)
- - _____, ____, and _____
- Cells found in the nodes:
 - _____ engulf and destroy bacteria, viruses, and other foreign substances
 - _____ type of white blood cell that responds to foreign substances
- ______ lymph nodes are the result of trapped lymph during action infections
- Nodes can become secondary ______ if they get to large a number of the infectious cells

Lymph Organs

Spleen – blood-rich organ that _____

- Destroys worn out red blood cells and returns pieces to liver
- Stores platelets and is a blood reservoir
- Fetus spleen makes red blood cells / Adult makes lymphocytes

Thymus – found overlying the heart

• Produces hormones (Thymosin) that program ______ to carry out protective roles in body

Tonsils – small masses of lymphatic tissue around the pharynx

• Protects _______ system by trapping and removing bacteria and other foreign substances before they can enter the throat

Peyer's Patches - found in walls of intestines

Protects ________ system from bacteria, viruses, and other harmful substances

Body's Defenses - both systems work hand in hand

<u>Nonspecific Defense System</u> – responds ______ to protect body from all foreign substances

- ______ that cover body surfaces and cells and chemicals that initially act to protect the body against pathogens
- _____ = harmful or disease causing microorganisms
- 1) Surface Membrane Barriers
 - Skin and mucous membranes are the body's _____ line of defense
 - Skin secretes ______ substances, stomach mucosa is acidic, saliva can kill bacteria, sticky mucous in digestive tract can trap microorganisms
 - When surface barrier is broken other nonspecific responses occur
- 2) Inflammatory response body's _____ line of defense
 - Triggered whenever body tissues are injured
 - Signs and Symptoms = redness, _____, swelling, and _____
 - STEPS: Injury → release of chemicals from injury site → blood vessels
 → activates pain receptors → attract phagocytes and white blood cells to area → ______ come in to block off injured area
 Prevents ______ of damaging agents, disposes cell debris and pathogens, and sets stage for repair
- 3) Cells
 - Phagocytes (______) engulfs foreign substance and breaks it down
 ______(NK) cells found in blood and lymph and can kill
 ______cells and virus-infected cells; can act against any foreign cell
- 4) Antimicrobial Molecules
 - ______ proteins that attach to and break apart foreign cells, which amplifies the inflammatory response
 - ______ proteins released by virus-infected cells that protect uninfected cells from viral takeover

5) Fever

- Abnormally high body temperature _____ multiplication of bacteria and enhances _____ processes
- Systemic response triggered by ______ (chemicals secreted by white blood cells and macrophages that have been exposed to foreign cells)

<u>Specific Defense System</u> – _____ system

- Attacks very specific foreign substances either _____ cell attack or by releasing chemicals or _____ and acts to destroy or inactive them
- Protects us from most bacteria, viruses, transplanted organs or grafts, and cells that have turned against us (cancer cells)
- _____ = highly specific resistance to disease
- Must ______ encounter a substance (antigen) before it can protect the body against it

<u>Immune Response</u> – reaction to a ______ that starts the inflammatory response and attacks specific antigens

• body will attack anything that is recognized has not being part of the body

3 General Characteristics of Immune Response

- 1) ______ specific acts on particular pathogens
- 2) _____ not restricted to infection site
- 3) Has "_____" recognizes and has even stronger attacks on previously encountered pathogens

Types of Immunity

- Humoral immunity
 - Provided by antibodies present in body's fluids
- Cellular immunity
 - When lymphocytes (living cells) defend the body

- any substance capable of exciting our immune system and provoking an

immune response

Lymphocytes – formed in red bone marrow

- _____ produce antibodies and oversee humoral immunity
- ______ nonantibody-producing lymphocytes that make up cell mediated immunity • Mature in thymus
- Our _____, not antigens, determines what specific foreign substances our immune system will recognize and resist

Macrophages – do not respond to specific antigens, but _____ lymphocytes

- Engulf pathogens and ______
- Leave of antigens on the surface so T cells can recognize the "bad guys"

Humoral (Antibody-Mediated) Immune Response

- B lymphocytes are activated when it binds to an ______
- Clonal selection B lymphocytes are ______ out of the billions and begin to ______ and multiple rapidly
- Cloned lymphocytes with the antibodies they release are the humoral response to antigens
- B cells turn into ______ (rapid multiplication) or ______ (long lived and can respond to antigen later)
- Blood antibody levels rise and then decline
- _____ responses to the same antigen are with memory cells _____, more prolonged, and more effective

Active and Passive Humoral Immunity

- Active Immunity B cells encounter antigens and produce antibodies
 - Naturally acquired ______ infections
 - Artificially acquired receive _____
- Passive Immunity getting ______ from another immune human or animal donor
 - Naturally acquired antibodies from ______ during fetal development
 - Artificially acquired received from _____

Antibodies (Immunoglobulins)

- Part of ______ soluble
 Each type only binds to ______ antigen
- Structure:
 - long and short chains of amino acids that form a _____
- Function:

 - Inactivate antigens by:
 ______ proteins bind to foreign cell and causing it to break apart

_____ harmful effects of toxins released from bacteria or virus

______ – antibodies can bind to ______ antigen at a time and they can . _____ foreign cells together; used in blood typing _____ – antigen-antibody complexes are so large that they ______ of solution; this makes it

easier for phagocytes to engulf and destroy antigens

Cellular (Cell-Mediated) Immune Response

- T cells are activated to form _____ (just like B cells) when the macrophage present broken down parts of antigens and T cells can recognize it as "non-self"
- T cells _____ bind to free antigens
- Classes:

 - (killer) T cells kill virus infected, cancer, or foreign graft cells
 T cells directors of immune system; recruit other cells to fight infections
 - _____ T cells slows activity of T and B cells; vital for stopping immune response
 - Delayed hypersensitivity T cells allergies and long-term inflammation
 - o ______ cells remain behind to be activated again if antigen returns