Chopter 4

Carbon \&
 The Molecular
 Diversity of Life

Essential Knowledge

- 1.D. 1 There are several hypotheses about the natural origin of life on Earth, each with supporting scientific evidence
- 2.A. 3 Organisms must exchange matter with the environment to grow, reproduce and maintain organization

Organic chemistry

- Carbon
- Basis for all life along with hydrogen
- Cycles through the environment from the air as CO_{2} to molecules of life in plants using solar energy
- Finally, carbon is passed to animals as they feed on plants
Hydrogen
$($ valence $=1)$

Nitrogen (valence $=3$)

Curbon Cycle

[^0]
Organic Chemistry

- Carbon and Evolution
- Organic molecules forming in the lab abiotically under conditions believed to have been found on early Earth
- Miller and Urey
- Hypothesized the Earth's atmosphere contained methane $\left(\mathrm{CH}_{4}\right)$, Ammonia $\left(\mathrm{NH}_{3}\right)$, Hydrogen

Carbon Structure

- 4 valence electrons
- Can form up to 4 covalent bonds
- Single, double, or triple bonds
- Can form large molecules
- In chains, rings, or branched

Hydrocarbons

- Only carbon \& hydrogen (petroleum; lipid 'tails')
- Covalent bonding; nonpolar
- High energy storage

Isomers

Isomers (same molecular

 formula, but different structure \& properties)- Structural = differing covalent bonding arrangement
- Geometric = differing spatial arrangement
- Enantiomers = mirror images; pharmacological industry (thalidomide)

(a) Structural isomers: variation in covalent partners, as shown in the example of butane and isobutane.

(b) Geometric isomers: variation in arrangement about a double bond. (In these diagrams, "X" represents an atom or group of atoms attached to a double-bonded carbon.)

(c) Enantiomers: variation in spatial arrangement around an asymmetric carbon, resulting in molecules that are mirror images, like left and right hands. Enantiomers cannot be superimposed on each other.

Functional Croups

- Functional Groups: chemical groups that affect molecular function by being directly involved in chemical reactions
- Ex: Testosterone and estrogen are both steroids that have similar structures, but different arrangements of functional groups create different functions

Functional Groups

- Attachments that replace one or more of the hydrogen bonded to the carbon skeleton of the hydrocarbon
- Each has a unique property from one organic to another
- Affects molecule's function in a reaction
- Hydroxyl Group

H bonded to O ; alcohols; polar (oxygen); soluble in water

Carbonyl Group

\mathbf{C} double bond to \mathbf{O};
At end of carbon skeleton: aldehyde
Within: ketone

Carbonyl	$-\mathrm{C}=0$
Ketones	I
	$\mathrm{C}=0$
Aldehydes	$-\mathrm{C}=0$ 1 H

Functional Groups

- Carboxyl Group
\mathbf{O} double bonded to \mathbf{C} to hydroxyl;
carboxylic acids;
acidic properties because covalent bond between O and H is so polar; dissociation of H ion
- Amino Group N to $2 \mathbf{H}$ atoms; amines;
acts as a base ($+\mathbf{1}$)
- Sulfhydral Group sulfur bonded to \mathbf{H}; thiols
helps stabilize protein structure

$\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{SH}$
- Phosphate Group
negative ion; covalently attached by 1 of its \mathbf{O} to the \mathbf{C} skeleton;
releases energy

[^0]: Copyright \& Pearson Education, Inc., publishing as Benjamin Cummings.

