Ch 26: Phylogenies Show Evolutionary Relationships

- Phylogeny = ______ history of species
- Systematics = classifying organisms and determining evolutionary relationship
- Taxonomy = _____ and organizing organisms into groups based on set characteristics
- Classification = arranging organisms into groups

Claudistics = evolutionary classification based on common descent and _______(derived)
 characteristics

How Classification Began

- Taxonomy is the branch of biology that groups and names organisms
- - Plants
 - Herbs, shrubs, and trees
 - Animals
 - Land-dwelling, air-dwelling, and water-dwelling

How Classification Began

- Carl Linnaeus developed a method of grouping organisms that is still used today, called <u>binomial nomenclature</u>
 - A
- In this system, the first word is the
 _____ and the second word is the
 _____, the two together are called
 the scientific name
 - Example: *Homo sapiens*

Modern Taxonomy

- Today, species are divided into groups according to evolutionary relationship
- Evolutionary relationship can be determined by looking at:
 - records, anatomical similarities, embryological similarities, and similarities

How Living Things are Classified

- Organisms are divided into groups called _____
- The more taxa species have in common, the more closely related they are
 - Domain (largest, least specific group)
 - Kingdom
 - Phylum
 - Class
 - Order
 - Family
 - Genus
 - Species (smallest, most specific group)

Classification Keys

- A dichotomous key is a tool used to identify a specific organism found in nature
 - Consists of a series of ______ statements that are the opposite of each other
- Always start at the beginning of the key and gradually work your way through the statements, deciding which of the pair is true for your specimen, and following the directions given
- When you reach a Latin name, you are done!

Phylogenic Classification

- Today, organisms are classified based on phylogeny, or evolutionary history
- A _______ is a diagram which shows phylogeny of organisms

Phylogentic Trees

Represents a ______ about

- Phylogenies are inferred from morphology and molecular homologies
 - Homologous structures
 - Careful about:
 - Convergent evolution and Analogous structures

How are evolutionary relationships determined?

- Structural (morphological) similarities
- Biochemistry: DNA and protein sequences
- Breeding behavior
- Geographical distribution

Claudistics

= ancestral species and all its descendents

- Monophyletic = clade
- Paraphyletic = _____ some species that share a common ancestor
- Polyphyletic = includes several groups with ancestors

Claudistics

- Shared ancestral characters = found in clade but evolved in ancestor not in clade
- Shared derived characters = characters unique to particular clade

= simplest explanation of evolutionary relationship