Cell Cycle Notes

Key Roles of Cell Division

- 1. Continuity of life is based on reproduction of cells, or _____ 2. _____ of an entire organism; ex: an amoeba is a one celled organism.
- 3. Production of progeny from multicellular organisms. Ex: plant cuttings
- 4. Sexually reproducing organisms from single cell (fertilized egg \rightarrow fetus \rightarrow infant)
- 5. Renewal & ______ of damaged or worn out cells

Cell Division Roles

Prokaryotic cells

= reproduction

- Origin of Replication = point where replication begins in bacteria DNA
- Eukaryotic cells
 - Development, growth, and repair

Cell Cycle – life of a cell from the time it is formed until its own division into

_____ Passes to cellular offspring.

Cellular Organization - Genetic Material

- DNA cell's _____, genetic material _____, genetic material ______, genetic material _______, genetic material ______, genetic material _______, genetic material ______, genetic material ______, genetic material ______, genetic material _______, genetic material ______, genetic material ______, genetic material _______, genetic material ______, genetic material _______, genetic material ______, genetic material

 - All new cells will have an _____ copy of the DNA
- Chromosomes
 - Structure that contains all the cell's packaged DNA
 - complex of Eukaryotic chromosomes made of ______ – complex o DNA and associated ______ that helps maintain the structure of the chromosome

Chromosome Numbers

- Each organism has a characteristic number of chromosomes.
- Human somatic cells (body cells) have _____ chromosomes
- _____ (reproductive cells sperm / egg) have half the # of chromosomes (human eggs and sperm have 23 chromosomes).

Chromosome Structure

- Non-dividing cells' chromosomes are in the form of ______
- Following DNA replication chromosomes coil & condense
- Duplicated chromosomes have 2 halves = ______
- Chromatids are connected by a ______

Phases of the cell cycle

Interphase

- Accounts for ~ 90% of cell's cycle
- Cell grows and copies chromosomes
- Divided into 3 subphases:
 - 1. _____ (first gap) phase
 - 2. _____ phase (synthesis)
 - 3. _____ (second gap) phase
 - 4. During all 3 subphases cell grows by producing proteins & cytoplasmic organelles

Mitosis

- Mitosis division of the ______
- Cytokinesis = division of the ______
 - Human body ~ 200 trillion somatic cells (we all started as one)
 - Mitosis ______ the chromosome number
 - If a cell begins with 46 chromosomes, the new cell will have 46 chromosomes.

Cytoskeleton – Role in Cell Cycle

- Microtubules
 - Hollow tubes that _____ chromosomes
 - ___ 9 sets of triplet microtubules
 - Centrosome microtubule-organizing center near the nucleus

Microfilaments

- Actin 2 strands intertwined
- Helps with ______ formation

Structures involved in cell division

- 1. Spindle fibers (mitotic spindle) fibers made of ______ and associated proteins that move the chromosomes during division
- 2. Centrosome non-membranous organelle that and produce the spindle
 - Single centrosome replicates during interphase
 - ______ radial arrays of microtubules forming from the centrosome
- 3.
 - _____ group of proteins associated with sections of
 - chromosomal DNA at the _____
 - Place of microtubule ______

Mitosis and Cytokinesis

Prophase

- Chromatin ______ into chromosomes becoming visible under light microscope
- _____ disappear
- Duplicated chromosomes with 2 sister ______
- Mitotic ______ form
- Lengthening of spindles pushes ______ away from each other.

Prometaphase

- Nuclear envelop starts to ______
- _____ can now interact with chromosomes and attach to
- Each chromatid now has a
- Non-kinetochore microtubules interact with those on the ______

Metaphase

- Longest stage of mitosis ~ 20 minutes
- ______to opposite ends
 Chromosomes line up at equator = _____; middle of
- the cell because of tugging from ______ microtubules
 Microtubules that originate from the centrosomes are attached to each side of the sister
- Microtubules that originate from the centrosomes are attached to each side of the sister chromatid's kinetochore
- Microtubule = spindle because of shape.

Anaphase

- Shortest stage
- Sister chromatids are ______ by microtubules (spindle fibers)
 - Caused by action of motor proteins as they depolymerize the kinetochore microtubules at the ______
 - This action ______ the fibers
- Chromosomes move toward ______ ends of cell
- Cell ______ due to ______ moving past one

another also using motor proteins

End of anaphase, two ends of cell have ______ and complete new set of chromosomes

Telophase

- Daughter cell ______ and nucleoli begin to form
- ______ forms around each set of chromosomes
- Chromosomes uncoil to ______state
- Nuclear division is complete

Cytokinesis

- Animal cells
 - Cleavage process that separates the two daughter cells
 - _____ when a ring of actin forms on the
 - cell surface and then interacts with myosin protein
 - It begins to contract until the cell is divided
- Plant Cells
 - ______ forms from the fusion of membrane ______ made from the ______
 - Deposits of ______ material are collected in cell plate
 - Plasma membrane forms followed by cell wall from cell plate contents.

Cell Cycle Control

- The cell cycle is directed by internal controls or checkpoints. They provide signs at each checkpoint
- There are 3 checkpoints throughout the cell cycle
 - G1, G2, and M

•			(Cdks) are proteins used in
	cell cycle control		
•		increases in number in the	and then
	breaks down		

Cell Cycle regulation

- Growth factors = proteins released by certain cells that stimulates other cells to divide
 - PDGF
 Released from platelets
 Bind to ______ on cells
 - called ______ (cells that aid in wound healing)
 - Triggers the fibroblasts to move past the G1 checkpoint
- - In the lab, cells will fill a space. When some cells are removed, mitosis is triggered and the cells divide to fill the space again
- attached to a substratum
- Cancer cells ______ exhibit density-dependent inhibition or anchorage dependence
 - Normally cells undergo ______ when an irreparable mistake occurs in DNA replication, but cancer cells bypass that normal control
 - Transformation normal cell to cancer cell
 Cancer cells result from a ______ in cell cycle
 - controls
 - Tumors can be benign or malignant
 - _____ = spread of cancer cells to other areas

- MPF