Cell Respiration Notes

An Overview

- _____ reactions and ______ pathway
- Energy ______ in bonds of food molecules is ______
- Cellular respiration provides the energy to make ATP from ADP and Phosphate
- Carbs, proteins, & lipids can be ______ as fuel in cellular respiration
- Cells must ______ its ATP to do cellular work
- Occurs in the ______

Mitochondria

- <u>Function</u>: site of energy capture and transformation (cell respiration)
 - Quantity in the cell is ______ with metabolic activity
- <u>Structure</u>: double membrane (phospholipid bilayer)
 - Inner folds = _____; contain enzymes used in ATP production
 ______ lies between the cristae and the outer
 - membrane and the ______ makes up the middle of the mitochondrion
 - Contains its own DNA and can divide on its own

Principles of Energy Harvest

- Catabolic pathway
 - Cellular Respiration
 - Can be from the breakdown of carbs, lipids, or proteins
 - _____ occurs in the absence of _____
 - Energy from these reactions are either used to do work or released as heat

Oxidizing Agent in Respiration

- _____ (nicotinamide adenine dinucleotide) and ______ (flavin adenine dinucleotide)
 - NAD+ is reduced to NADH, then ______ to make ATP in the final step of cell respiration
 Same process occurs with FADH₂

Pathway of Electrons

- Electrons are removed from ______ through a series of reactions to eventually get added to ______ to make _______
- Electron pathway:

Types of Phosphorylation

- Substrate-level Phosphorylation
 - Type of phosphorylation in which a phosphate group is transferred from an
 - _____ compound to the ______ compound (ATP)

is

Cellular Respiration – 2 Types

- Aerobic _____ is used in the production of ATP
 - Glycolysis \rightarrow formation of Acetyl CoA \rightarrow Krebs Cycle \rightarrow ETC
 - Anaerobic no O₂ is present in the production of ATP; referred to as ______
 - _____ only

4 Steps of Aerobic Cellular Respiration

STEP 1: Glycolysis = "_____ Glucose – a 6C sugar, is split to form 2 molecules of – a 3C sugar • Occurs in the Catabolic pathway that decomposes glucose and other organic fuels • 10 steps divided into 2 phases: • Energy investment phase Cell ______ in initial breakdown of glucose Energy payoff phase • ATP is produced by level phosphorylation and NAD+ is reduced to NADH by electrons released from the breakdown of food Net energy yield • 2 _____ produced • 2 _____ produced Types of Fermentation **Alcohol Fermentation** – form of anaerobic respiration that converts glucose into • and _____ by yeasts, fungi, or bacteria • Used in the production of alcoholic beverages and bread Lactic Acid Fermentation: form of anaerobic respiration that converts glucose into _____ by animals and some bacteria • Used in the dairy industry to make cheese & yogurt. Human muscle cells create lactic acid & ATP STEP 2 – Formation of Acetyl CoA • The junction between glycolysis and the Kreb's Cycle Pyruvate enters the ______ where it is oxidized into Acetyl CoA • Electrons are _____ in the form of ______ • Overall Reaction of Pyruvate \rightarrow acetyl CoA: • 2 pyruvate + 2 NAD⁺ + 2 CoA \rightarrow ______ + 2NADH + 2 CO₂ Steps of Acetyl CoA Formation 1. Pyruvate's _____ group (COO-) is removed and given off as a molecule of CO₂. 2. Remaining 2C fragment is ______ (electron is lost) forming a compound named An enzyme transfers the "lost" electrons to NAD+ forming ______ , a sulfur-containing compound (derived from Vitamin B) is 3. attached to the acetate by an unstable bond which makes the attached acetyl group highly reactive. STEP 3 – Krebs Cycle • A metabolic "furnace" that is also known as the Citric Acid Cycle Krebs Cycle reactions oxidize the remaining acetyl CoA into CO₂

- The Krebs Cycle is composed of 8 enzyme-controlled steps.
 - Two turns of the Krebs Cycle produces:
 - 2_____
 - 6 _____ (1 NADH is equal to 3 ATP)
 - 2 ______ (1 FADH₂ 1.5 ATP)
- **<u>Remember</u>**: In Glycolysis, one molecule of glucose is partially oxidized into 2 molecules of pyruvate. Each of the 2 pyruvate molecules are then converted to Acetyl CoA which enters the Krebs cycle.

STEP 4 – Electron Transport Chain (ETC)

- Electron carrier molecules membrane ______ in the cristae
- Shuttles electrons that release energy used to make ATP through ______
- Sequence of reactions that prevents energy being released in 1 explosive step
- Together, glycolysis and Krebs Cycle have produced only a net gain of ______ ATP molecules
- - NADH & FADH₂ will donate their electrons to the system of electron carrier molecules embedded in the ______ of the mitochondrial membrane.
 - Remember: cristae ______ for chemical reactions to occur
- Most of the ETC is composed of various proteins that remove ______ from NADH and FADH₂ to create an ______ between the intermembrane space and the mitochondrial matrix.
 - This proton gradient is maintained because the membrane's bilayer is impermeable to H⁺, thus preventing diffusion back to the matrix

Chemiosmosis

- - ADP and Pi into ATP.

Versatility of Catabolic Reactions

- Cell respiration can utilize other molecules from food to start the process
 - Proteins are broken into amino acids with ______ removed, which feeds into glycolysis or Krebs

_____ enzyme

- Carbs such as ______ is broken down to glucose, which feeds into glycolysis
- Fats are broken into ______ and ______
 - Glycerol is changed to G3P (simple sugar)
 - Fatty acids are broken into acetyl CoA

Cell Respiration Regulation

- ______ feedback mechanism
- One of the enzymes in glycolysis is an ______
 - Products made will bind to the enzyme and inhibit the activity