Cell Transport

Cells need to communicate with other cells and transport materials to keep the cell alive

Cell Membrane

- Function = allows materials into and out of the cell
- Structure:
 - 2 main parts: proteins and phospholipids
 - Receptor proteins = site of attachment for molecules
 - Transport proteins = moves materials through the membrane

- Phospholipid = 2 layers that create the boundary of the cell
 - Head polar side that is attracted to water (hydrophilic)
 - Tail 2 fatty acid chains that are nonpolar (hydrophobic)

Cholesterol = helps keep membrane fluid

 Carbohydrates = attached to phospholipid and receptor proteins to help bind materials outside the cell

Fluid Mosaic Model = phospholipids and proteins move freely throughout the membrane in a fluid-like motion

Structure of the Cell Membrane

Outside of cell

Vocabulary

 Equilibrium = a state where the concentration of substances are the same across a membrane

 Concentration gradient = a difference in the concentration of a substance across a distance

Vocabulary

 Selective Permeability = allowing certain substances in and out of a cell but not others

Passive vs Active Transport

Passive

- No energy required
- Molecules move from high to low concentrations
- DOWN the concentration gradient towards equilibrium

Active

- Uses energy
- Molecules move from low to high concentrations
- AGAINST the concentration gradient

Methods of Passive Transport

Diffusion

- Transports small, nonpolar molecules
 - Nonpolar = lacks a positive or negative charge on the molecule
- Ex: CO_2 and O_2
- Does not need a protein to move the molecules

Osmosis

• Transports water (H₂O) across a membrane

Methods of Passive Transport

Facilitated Diffusion

- Transports larger molecules than diffusion and charged or polar molecules
- Ex: amino acids, Ca²⁺, Cl⁻
- Requires a protein to move molecules

Types of Solutions or Environments that Cause Osmosis

- Isotonic:
- No NET movement of water across the membrane because there is the same concentration of solute on each side of the membrane
 - Means that water moves, but the same amount of water moves in and out
 - Cell stays the same size
 - Homeostasis (equilibrium) is maintained

Types of Solutions or Environments that Cause Osmosis

• Hypertonic:

- Water moves out of the cell because there is more solute outside the cell and less water
- Size of the cell decreases
- Can collapse the cell

Types of Solutions or Environments that Cause Osmosis

• Hypotonic:

- Water moves into the cell because there is less solute outside the cell and more water
- Size of the cell increases
- Can burst the cell

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

How Active Transport Uses Energy

- An ATP molecule loses one of the phosphate groups
- By breaking the covalent bond, the molecule releases energy
- This energy can be used by other molecules to do work in the cell, such as moving molecules across a membrane

ENERGY

Method of Active Transport

Protein Pumps:

- One example is the **Sodium/Potassium Pump** (Na/K)
- Requires a protein to move the ions
- Moves Na out and K in
 - Without this pump, our bodies would not be able to send electrical signals

Method of Active Transport

Vesicles:

- Endocytosis
- Moves large molecules into the cell
- Pinches in the cell membrane and creates a vesicle inside the cell
- Ex: White blood cells engulfing bacteria

Method of Active Transport

Vesicles:

- Exocytosis
- Moves large molecules out of the cell
- Vesicles fuse with the cell membrane and release the molecules
- Ex: nerve cells releasing chemicals to communicate with other nerve cells

