CH8 - METABOLISM NOTES

I. Metabolism, Energy, and Life A. The chemistry of life is organized into metabolic pathways

Energy =		
Metabolism =		
2 Types of Pathw	vavs	
• 1	polic Pathway	
	Metabolic pathways which	energy by breaking
	down complex molecules to	
b.	"" metabolic pat	hway – energy is released from
	(glycogen to gluc	cose)
c.	Ex: Triglycerides are broken down into free	fatty acids for energy usage
2. Anab	olic Pathway	
	Metabolic pathways which	energy to
	complex molecules from	simpler ones.
b.	complex molecules from " metabolic pathway – en	ergy used to drive uphill reactions.
c.	Ex: synthesis of proteins from amino acids	
Types of Energy 1. Kinetic 2. Therma 3. Potenti		
Open system = _		
C. The energy to	ransformations of life are subject to two law	vs of thermodynamics
2 Laws of Therm	nodynamics	
1. First l	Law =	
a.	Energy can	
b.	Energy can be	
3. Secon	nd Law =	
a.	Every energy transfer or transformation	
	•	omness) of the universe
b.	Organisms can increase their order, as long	as the order of their surroundings
		

D. Organisms live at the expense of free energy and require a highly ordered system - Order is maintained by constant free energy _____ into the system of order or free energy flow results in _____ - Increased _____ and entropy are offset by biological processes that ______ or increase order Living systems do not violate the 2nd law of thermodynamics because: Order is maintained by ______ cellular processes that increase entropy (negative free energy change) with those that _____ entropy (positive free energy change) Energy input must ______ free energy _____ to entropy to ______ and power cellular processes Gibb's Free Energy Equation • $\Delta G = \text{change in}$ • $\Delta H = change in$ _____ in Kelvin units • $\Delta S = change in$ _____ Entropy vs. Enthalpy = _____ E. ATP powers cellular work by coupling exergonic and endergonic reactions Exergonic Reactions: Spontaneous chemical reaction in which there is a

MUIS	Jine ite	actions. Spontaneous enemicai rea	tion in which there is a	
		-	of free energy (ΔG)	
-	Total 1	free energy of the products is	the total free energy i	in the
	reacta	nts ())
	0	Occurs	and releases energy	
	0			
	0	Example: food broken down and	releases energy from chemical bonds	

Graph

Endergo:	nic R	eactions: Reactions that r	require the	(of energy (ΔG).
- P	rodu	cts have	_ energy than re	actants.		
	0	Absorb energy and are				
	0	Requires				
	0	Ex: plants use carbon di	ioxide and water	to form sugars	S	
Graph						
Energy (Coupl	ing				
• F	leat a	lone is an	e	nergy source		
• E	Energy	y Coupling: the use of an	l		reaction to drive an	
_			one.			
		Ex: the breakdown and				
		s responsible for MOST e		in cells –		
is		oled with endergonic read				
	_	is release	d to the surroun	ding environme	ent	
т.	. 1	11.11. (1.1.1.)	1 1			
		linking the phosphate gr				
• E	energy	y from ATP hydrolysis is	s coupled to ende	ergonic reaction	ns by transferring	
11	rom <i>F</i>	ATP to another molecule	= 1- :-		41 6	1.1 . 4 .
	_	Phosphorylated molecul	ie is		, therefore a	die to
		perform work.				

ATP Structure