Nervous System Notes: Physiology

	called the	
C	The inside of the cell is relative to the	_ and is
	measured using a voltmeter	
- The	resting membrane potential is when a neuron is not transmitting a signal	
C	Resting membrane potential =	
esting Mer	mbrane Potential	
- In al	I neurons, the resting membrane potential depends on the	
that	exist across the plasma membrane	
C	Ion pumps and ion channels maintain the resting potential of a neuron	
- The	concentration of Na ⁺ is in the extracellular fluid than in the cytose is true for K^+	ol while
the _	is true for K^+	
- Ane	euron that is not transmitting signals contains many	an
	Na ⁺ channels in its plasma membrane	
- The	diffusion of K^{+} and Na $^{+}$ through these channels leads to a	
	across the membrane, producing the resting potential	
- Gate	ed ion channels open or close in response to the binding of a specific	0
- Gate a - Whe depo	ed ion channels open or close in response to the binding of a specific change The response is a change in the membrane potential on ion channels are stimulated, two different responses can occur: hyperpolarizatio plarization	n or
- Gate a - Whe depo	ed ion channels open or close in response to the binding of a specific change The response is a change in the membrane potential en ion channels are stimulated, two different responses can occur: hyperpolarizatio plarization Both are called because the magnitude	n or e of the
- Gate a - Whe depo	ed ion channels open or close in response to the binding of a specific change The response is a change in the membrane potential on ion channels are stimulated, two different responses can occur: hyperpolarizatio plarization	n or e of the
- Gate a - Whe depo c	ed ion channels open or close in response to the binding of a specific change change change in the membrane potential en ion channels are stimulated, two different responses can occur: hyperpolarizatio olarization because the magnitude change in membrane potential varies with the of the Responses	n or e of the
- Gate a - Whe depo c	ed ion channels open or close in response to the binding of a specific change change change in the membrane potential en ion channels are stimulated, two different responses can occur: hyperpolarization olarization because the magnitude change in membrane potential varies with the of the	n or e of the
- Gate a - Whe depo c	ed ion channels open or close in response to the binding of a specific change change change in the membrane potential en ion channels are stimulated, two different responses can occur: hyperpolarization olarization because the magnitude change in membrane potential varies with the of the Responses Some stimuli trigger a hyperpolarization An increase in the magnitude of the membrane potential (n or e of the stimulu
- Gate a - Whe depo c	ed ion channels open or close in response to the binding of a specific change change change in the membrane potential en ion channels are stimulated, two different responses can occur: hyperpolarization olarization because the magnitude change in membrane potential varies with the of the Responses Some stimuli trigger a hyperpolarization	n or e of the stimulu
- Gate a - Whe depo - Cell	ed ion channels open or close in response to the binding of a specific change change change in the membrane potential en ion channels are stimulated, two different responses can occur: hyperpolarization olarization because the magnitude change in membrane potential varies with the of the Responses Some stimuli trigger a hyperpolarization An increase in the magnitude of the membrane potential (n or e of the stimulu
- Gate a - Whe depo - Cell	 ed ion channels open or close in response to the binding of a specific change The response is a change in the membrane potential en ion channels are stimulated, two different responses can occur: hyperpolarization Both are called because the magnitude change in membrane potential varies with the of the Responses Some stimuli trigger a hyperpolarization An increase in the magnitude of the membrane potential (n or e of the stimulu
- Gate a - Whe depo - Cell	ed ion channels open or close in response to the binding of a specific change change o The response is a change in the membrane potential en ion channels are stimulated, two different responses can occur: hyperpolarization olarization o Both are called because the magnitude change in membrane potential varies with the because the magnitude change in membrane potential varies with the of the Responses o Some stimuli trigger a hyperpolarization • An increase in the magnitude of the membrane potential (difference from outside to inside) o Other stimuli trigger a depolarization	n or e of the stimulu
a - Whe depo - Cell	ed ion channels open or close in response to the binding of a specific change change change in the membrane potential en ion channels are stimulated, two different responses can occur: hyperpolarization blarization because the magnitude change in membrane potential varies with the because the magnitude change in membrane potential varies with the of the Responses Some stimuli trigger a hyperpolarization An increase in the magnitude of the membrane potential (difference from outside to inside) Other stimuli trigger a depolarization A reduction in the magnitude of the membrane potential (move towards)	n or e of the stimulu
- Gate a - Whe depo - Cell	ed ion channels open or close in response to the binding of a specific change The response is a change in the membrane potential en ion channels are stimulated, two different responses can occur: hyperpolarization blocause the magnitude change in membrane potential varies with the because the magnitude change in membrane potential varies with the of the Responses Some stimuli trigger a hyperpolarization An increase in the magnitude of the membrane potential (difference from outside to inside) Other stimuli trigger a depolarization A reduction in the magnitude of the membrane potential (move towards difference from outside to inside) A stimulus strong enough to produce a depolarization that reaches the threshol trigger an	n or e of the stimulu s a d will
- Gate a - Whe depo - Cell	ed ion channels open or close in response to the binding of a specific change change The response is a change in the membrane potential en ion channels are stimulated, two different responses can occur: hyperpolarization blarization Both are called because the magnitude change in membrane potential varies with the because the magnitude change in membrane potential varies with the of the Responses Some stimuli trigger a hyperpolarization An increase in the magnitude of the membrane potential (difference from outside to inside) Other stimuli trigger a depolarization A reduction in the magnitude of the membrane potential (move towards difference from outside to inside) A stimulus strong enough to produce a depolarization that reaches the threshol	n or e of the stimulu s a d will

4 Steps of Detecting, Generating, and Transmitting an Action Potential:

- Resting membrane potential
- Depolarization after threshold
- Action Potential
- Repolarization

Action Potential Steps

- An action potential is a brief ______ depolarization of a neuron's plasma membrane that carries information along axons
- Both voltage-gated Na⁺ channels and voltage-gated K⁺ channels are involved in the production of an action potential
 - Voltage-gated channels rely of electrical signals rather than ligands
- Depolarization
 - Membrane ______ open which allows Na⁺ to diffuse ______ the cell
- Action Potential
 - Propagation of the signal is ______ down the axon
- Repolarization
 - As the action potential subsides ______, and K⁺ flows ______, and K⁺ flows ______ on the membrane
 - restores the ion concentration differences with the use of ______
 This comes back to the resting membrane potential
- A ______ follows the action potential during which a second action potential cannot be initiated

Conduction of Action Potentials

- An action potential can travel long distances by regenerating itself along the axon
- The opening of Na+ channels triggers the ______ channels
- The speed of an action potential increases with the diameter of an axon
- Action potentials in myelinated axons jump between the nodes of Ranvier in a process called
 - This allows the signal to travel _____ down the axon

Synapse

- In an electrical synapse, electrical current flows directly from one cell to another via a
 - o The vast majority of synapses are chemical synapses
- In a chemical synapse, a ______ neuron releases chemical neurotransmitters, which are stored in the synaptic terminal
 - The neurotransmitters will travel through the space between the cells called the to bind to the ______ neuron

- When an action potential reaches the terminal a opens to allow Ca²⁺ to flow into the _________ holding the neurotransmitters
- _ to with the plasma membrane
- The final result is the of neurotransmitters into the synaptic cleft

Direct Synaptic Transmission

- The process of direct synaptic transmission involves the binding of _____ to ligand-gated ion channels
- Neurotransmitter binding causes the ion channels to ______, generating a postsynaptic
- Postsynaptic potentials fall into two categories: Excitatory (stimulatory) or Inhibitory
- After its release, the neurotransmitter diffuses out of the synaptic cleft
 - May be ______ by the pre-synaptic cell or degraded by ______

Neurotransmitters

_____ that act on cells to create a response The same neurotransmitter can produce ______ in different types of cells Examples: Acetylcholine – most common type and stimulates
 contractions Loss or dysfunction of this neurotransmitter will lead to various disorders Epinephrine and Norepinephrine – _____ response Dopamine and Serotonin – _____ responses GABA – ______ neuron activity especially during fear or anxiety when

- neurons are overstimulated
 - The medicine benzodiazepines help GABA reduce neural activity even further
- Gases such as nitric oxide and carbon monoxide are local regulators in the PNS